Abstract

This paper discusses the modeling and control of a robotic manipulator with a new deburring tool, which integrates two pneumatic actuators to take advantage of a double cutting action. A coordination control method was developed by decomposing the robotic deburring system into two subsystems: the arm and the deburring tool. A decentralized control approach was pursued in which suitable controllers were designed for the two subsystems in the coordination scheme. Robust feedback linearization was utilized to minimize the undesirable effect of external disturbances, such as static and Coulomb friction and nonlinear compliance of the pneumatic cylinder stemming from the compressibility of air. The developed coordination control method demonstrated its efficacy in terms of deburring accuracy and speed. Simulation results show that the developed robotic deburring system significantly improves the accuracy of the deburring operation.

1.
Furukawa
,
T.
,
Dissanayake
,
D. C. M. W. M. G.
, and
Barratt
,
A. J.
, 1996, “
Automated Polishing of an Unknown Three-Dimensional Surface
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
12
(
3
), pp.
261
270
.
2.
Kurfess
,
T. R.
,
Whitney
,
D. E.
, and
Brown
,
M. L.
, 1988, “
Verification of a Dynamic Grinding Model
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
110
(
4
), pp.
403
409
.
3.
Abele
,
E.
,
Boley
,
D.
, and
Sturz
,
W.
, 1984, “
Interactive Programming of Industrial Robots for Deburring
,”
Proc. of 14th International Industrial Robots Symposium
, pp.
505
516
.
4.
Bopp
,
T.
, 1983, “
Robotic Finishing Applications: Polishing Sanding, Grinding
,”
Proc. of 13th International Symposium on Industrial Robots
, pp.
200
216
.
5.
Gustaffson
,
L.
, 1983, “
Deburring With Industrial, Robots
,” Technical Report,
Society of Manufacturing Engineers
.
6.
Spong
,
M. W.
,
Lewis
,
F. L.
, and
Abdallah
,
C. T.
, 1993,
Robot Control: Dynamics, Motion Planning, and Analysis
,
IEEE
,
New York
.
7.
Whitney
,
D. E.
, 1987, “
Historical Perspective and State of the Art in Robot Force Control
,”
Int. J. Robot. Res.
0278-3649,
6
(
1
), pp.
3
14
.
8.
Morteson
,
A.
, 1983, “
Automatic Grinding
,”
Proc. of 13th International Symposium on Industrial Robots
, pp.
5
6
.
9.
Hogan
,
N.
, 1985, “
Impedance Control: An Approach to Manipulation: Part I, Part II, Part III
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
, pp.
1
24
.
10.
Hogan
,
N.
, 1984, “
Impedance Control of Industrial Robots
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
1
(
1
), pp.
97
113
.
11.
Cohen
,
M.
, and
Flash
,
T.
, 1991, “
Learning Impedance Parameters for Robot Control Using an Associative Search Network
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
, pp.
382
390
.
12.
Kazerooni
,
H.
, 1987, “
Robust Non-Linear Impedance Control for Robot Manipulators
,”
IEEE Conference on Robotics and Automation
, Raleigh, NC.
13.
Kazerooni
,
H.
,
Sheridan
,
T. B.
, and
Houpt
,
P. K.
, 1986, “
Fundamentals of Robust Compliant Motion for Manipulators
,”
IEEE J. Rob. Autom.
0882-4967,
2
(
2
), pp.
418
427
.
14.
Wang
,
D.
, and
Cheah
,
C. C.
, 1996, “
A Robust Learning Control Scheme for Manipulators With Target Impedance at End-Effectors
,”
Robotics and Manufacturing: Recent Trends in Research and Applications
,
ASME
,
New York
, Vol.
6
, pp.
851
856
.
15.
Carelli
,
R.
, and
Kelly
,
R.
, 1991, “
An Adaptive Impedance/Force Controller for Robot Manipulators
,”
IEEE Trans. Autom. Control
0018-9286,
36
, pp.
967
972
.
16.
Raibert
,
M.
, and
Craig
,
J.
, 1981, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
102
, pp.
126
133
.
17.
Khatib
,
O.
, 1987, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE J. Rob. Autom.
0882-4967,
3
, pp.
43
53
.
18.
Duelen
,
G.
,
Munch
,
H.
,
Surdilovic
,
D.
, and
Timm
,
J.
, 1992, “
Automated Force Control Schemes for Robotics Deburring
,”
IEEE Trans. Rob. Autom.
1042-296X,
2
, pp.
912
917
.
19.
Raibert
,
M. H.
, and
Craig
,
J. J.
, 1981, “
Hybrid Position/Force Control of Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
102
, pp.
126
133
.
20.
Mason
,
M. T.
, 1981, “
Compliance and Force Control for Computer Controlled Manipulators
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
11
, pp.
418
432
.
21.
Rodic
,
A. D.
, and
Vukodratovic
,
M. K.
, 1992, “
Regulator of Minimal Variance in Hybrid Control Strategy of Manipulation Robots
,”
Proc. of IEEE International Conference on Robotics and Automation
,
Nice, France
,
IEEE
,
New York
, Vol.
2
, pp.
912
917
.
22.
Arimoto
,
S.
,
Naniwa
,
T.
, and
Tsubouchi
,
T.
, 1992, “
Principle of Orthogonalization for Hybrid Control of Robot Manipulators
,”
Proceedings of IMACS’92
,
Kobe, Japan
, pp.
1293
1300
.
23.
Raibert
,
M. H.
, and
Craig
,
J. J.
, 1981, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
102
, pp.
126
128
.
24.
Yoshikawa
,
T.
,
Sugie
,
T.
, and
Tanaka
,
M.
, 1988, “
Dynamic Hybrid Position/Force Control of Robot Manipulators: Controller Design and Experiment
,”
IEEE J. Rob. Autom.
0882-4967,
4
, pp.
699
705
.
25.
Wang
,
D.
,
Soh
,
Y. C.
, and
Cheah
,
C. C.
, 1995, “
Robust Motion and Force Control of Constrained Manipulators by Learning
,”
Automatica
0005-1098,
31
(
2
), pp.
257
262
.
26.
Whitney
,
D. E.
, 1987, “
Historical Perspective and State of the Art in Robot Force Control
,”
Int. J. Robot. Res.
0278-3649,
6
(
1
), pp.
3
14
.
27.
Spong
,
M. W.
, and
Vidyasagar
,
M.
, 1989,
Robot Dynamics and Control
, pp.
141
150
;
247
251
.
28.
Kuntze
,
H. B.
, 1984, “
On the Closed-Loop Control of an Elastic Industrial Robot
,”
Proceedings: 1984 American Control Conference
, pp.
1217
1223
.
29.
Paul
,
F. W.
,
Gettys
,
T. K.
, and
Thomas
,
J. D.
, 1982, “
Defining of Iron Castings Using a Robot Positioned Chipper
,”
Proceedings: Robotics Research and Advanced Application
,
ASME
,
New York
, pp.
269
278
.
30.
Sharon
,
A.
, and
Hardt
,
D. E.
, 1984, “
Enhancement of Robot Accuracy Using Endpoint Feedback and a Macro-Micro Manipulator System
,”
Proceedings: 1984 American Control Conference
, pp.
1836
1842
.
31.
Asada
,
H.
, and
Sawada
,
Y.
, 1984, “
Design of an Adaptable Tool Guide for Grinding Robot
,”
ASME Design Engineering Technical Conference
, ASME Paper No. 84-Det-41.
32.
Asada
,
H.
, and
Goldfine
,
N.
, 1985, “
Optimal Compliance Design for Grinding Robot Tool Holders
,”
IEEE Conference on Robotics and Automation
, St. Louis, MO.
33.
Kazerooni
,
H.
, and
Guo
,
J.
, 1987, “
Direct-Drive, Active Compliant End-Effector
,”
IEEE J. Rob. Autom.
0882-4967,
4
, pp.
758
-
760
.
34.
Hollis
,
R. L.
, “
A Planar XY Robotic Fine Positioning Device
,”
Proc. of IEEE International Conference on Robotics and Automation
,
Raleigh
, NC,
IEEE
,
New York
, Vol.
2
, pp.
329
-
336
.
35.
Wang
,
J.
,
Pu
,
J.
, and
Moore
,
P. R.
, 1997, “
A Practicable Control Strategy for Servo Pneumatic Actuator Systems
,”
Control Eng. Pract.
0967-0661,
71
, pp.
1483
1488
.
36.
Sorli
,
M.
,
Gastaldi
,
L.
,
Codina
,
E.
,
de las Heras
,
S.
, 1999,
Dynamic Analysis of Pneumatic Actuators
,
Elsevier
,
New York
.
37.
Asakawa
,
N.
, and
Takeuch
,
Y.
, 1996, “
Automatic Deburring of Cast Iron Workpiece: Removal of Projection on a Convex Sculptured Surface
,”
Proc. of 3rd Japan-France Congress on Mechatronics
,
Besancon
, pp.
686
690
.
38.
Hollowell
,
R.
, and
Guile
,
R.
, 1987, “
An Analysis of Robotic Chamfering and Deburring
,” ASME Winter Annual Meeting: Robotics Theory and Applications.
39.
Kazerooni
,
H.
,
Bausch
,
J. J.
, and
Kramer
,
B. M.
, 1986, “
An Approach to Automated Deburring by Robot Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
108
(
4
), pp.
354
359
.
40.
Kelmar
,
L.
, and
Khosla
,
P. K.
, 1988, “
Automatic Generation of Kinematics for a Reconfigurable Modular Manipulator System
,”
IEEE Proc. Int. Conf. on Robotics and Automation
,
IEEE
,
New York
, pp.
663
668
.
41.
Isidori
,
A.
,
Moog
,
C. H.
, and
De Luca
,
A.
, 1986, “
A Sufficient Condition for Full Linearization via Dynamic State Feedback
,”
Proc. of 25th IEEE Conference on Decision and Control
,
Athens
,
IEEE
,
New York
, pp.
203
208
.
42.
Deccusse
,
J.
, and
Moog
,
C. H.
, 1985, “
Decoupling With Dynamic Compensation for Strong Invertible Affine Nonlinear Systems
,”
Int. J. Control
0020-7179,
42
, pp.
1387
1398
.
43.
Chen
,
L. L.
, 1985, “
Nonlinear Feedback and Computer Control of Robot Arms
,” Ph.D. thesis, Washington University, St. Louis, MO.
44.
Isidori
,
A.
, 1985,
Nonlinear Control Systems: An Introduction
,
Springer-Verlag
,
Berlin
.
45.
Armstmstrong-Helouvry
,
S.
,
Dupont
,
P.
, and
Canudas De Wit
,
C.
, 1994, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
0005-1098,
30
, pp.
1083
1183
.
46.
Acarman
,
T.
,
Hatipoglu
,
C.
, and
Ozguner
,
U.
, 2001, “
A Robust Nonlinear Controller Design for a Pneumatic Actuator
,”
Proc. of 2001 American Control Conference
, June 25–27, Vol.
6
, pp.
4490
4495
.
You do not currently have access to this content.