A precision-scaling kinematic model with the effects of physical error is investigated in the miniaturization of four-bar polymer machines with compliant joints. A pseudolinkages model (PLM) for the multiple-links compliant machine is formulated. A scaling formulation of the multiple-links compliant machine and its associated PLM is developed. A method for scaled-up test and scaled-down analysis of the compliant mechanism with the considerations of physical errors of fabrication processes, material properties, and experimental tests is proposed. By defining an index of signal-to-noise ratio, the performance of the miniature realization under physical errors is evaluated. The applications of the scaling PLM for the miniature realization of a compliant machine are illustrated by performing both numerical analysis and experimental testing on four-bar compliant polyethylene machines.

1.
Burns
,
R. H.
, 1964, “
The Kinetostatic Synthesis of Flexible Link Mechanism
,” Ph.D. dissertation, Yale University, New Haven.
2.
Her
,
I.
, and
Midha
,
A.
, 1987, “
A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
348
355
.
3.
Howell
,
L. L.
, and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
280
290
.
4.
Her
,
I.
, and
Chang
,
J. C.
, 1994, “
A Linear Scheme for the Displacement Analysis of Micropositioning Stages With Flexure Hinges
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
770
776
.
5.
Fujimasa
,
I.
, 1996,
Micromachines—A New Era in Mechanical Engineering
,
Oxford University Press
,
London
.
6.
Hattori
,
T.
, 1997, “
Achievements of Japanese Micromachine Projects
,”
Transducers’97
,
International Conference on Solid-State Sensors and Actuators
, Chicago, pp.
25
28
.
7.
Hayashi
,
T.
, 1994, “
Micromechanism and Their Characteristics
,”
IEEE Int. Workshop on Micro Electro Mechanical Systems
,
MEMS’94
, Japan, pp.
39
44
.
8.
Kota
,
S.
,
Ananthasuresh
,
G. K.
,
Crary
,
S. B.
, and
Wise
,
K. D.
, 1994, “
Design and Fabrication of Microelectromechanical Systems
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
1081
1087
.
9.
Chang
,
R. J.
, and
Wang
,
Y. L.
, 1999, “
Integration Method for Input-Output Modeling and Error Analysis of Four-Bar Polymer Compliant Micromachines
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
220
228
.
10.
Chang
,
R. J.
,
Wang
,
H. S.
, and
Wang
,
Y. L.
, 2003, “
Development of Mesoscopic Polymer Gripper System Guided by Precision Design Axioms
,”
Precis. Eng.
0141-6359,
27
, pp.
362
369
.
11.
Nicoud
,
J. D.
, 1995, “
Microengineering: When is Small Too Small? Nanoengineering: When is Large Too Large?
,”
Sixth International Symposium on Micro Machine and Human Science
,
IEEE
,
New York
, pp.
1
6
.
12.
Becker
,
E. B.
,
Carey
,
G. F.
, and
Oden
,
J. T.
, 1981,
Finite Elements—An Introduction
, Vol.
1
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
13.
Burnett
,
D. S.
, 1988,
Finite Element Analysis—from Concepts to Applications
,
Addison-Wesley
,
Reading, MA
.
14.
Wilding
,
M. A.
, and
Ward
,
I. M.
, 1981, “
Creep and Recovery of Ultra High Modulus Polyethylene
,”
Polymer
0032-3861,
22
, pp.
870
876
.
15.
Ward
,
I. M.
, and
Hadley
,
D. W.
, 1993,
An Introduction to the Mechanical Properties of Solid Polymers
,
Wiley
,
New York
.
16.
Bendat
,
J. S.
, and
Piersol
,
A. G.
, 1991,
Random Data Analysis and Measurement Procedures
,
Wiley
,
New York
.
You do not currently have access to this content.