Dilute sprays are used in hot die processing to lubricate and cool the die surface prior to forming of the part. These sprays are often stochastic in nature with fine droplets that are randomly deposited at high velocities. Consequently, the spraying mechanism is difficult to measure and to model. This paper presents a simple isothermal deterministic model for the spreading of droplets on hot die surfaces. This model is based on the volume of fluid (VOF) finite difference approach. The lubricant properties for this model are inverse calculated from simple experiments using various lubricant dilution ratios. Using similarity principles, the model is validated by comparing it with results from single droplet experiments with different droplet diameters and deposition speeds. It is found that for dilute suspensions the isothermal assumption is valid for surface temperatures where no-steam forms and that a simple linear relationship exists in the logarithmic scale between the spread factor and the droplet Weber number.

1.
Wachters
,
L. H. J.
, and
Westerling
,
N. A. Y.
, 1996, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
0009-2509,
21
, pp.
1047
1056
.
2.
Engel
,
O. G.
, 1955, “
Water Drop Collisions With Solid Surfaces
,”
J. Res. Natl. Bur. Stand.
0160-1741,
5
, pp.
281
298
.
3.
Savic
,
P.
, and
Boult
,
G. T.
, 1955, “
The Fluid Flow Associated With the Impact of Liquid Drops With Solid Surfaces
,” National Research Council of Canada, Ottawa, Report No. MT-26.
4.
Savic
,
P.
, 1958, “
The Cooling of a Hot Surface by Drops Boiling in Contact With it
,” National Research Council of Canada, Ottawa, Report No. MT-26.
5.
Inada
,
S.
,
Miyasaka
,
Y.
,
Mishida
,
K.
, and
Chandratilleke
,
G. R.
, 1983, “
Transient Temperature Variation of a Hot Wall due to an Impinging Water Drop: Effect of Subcooling of the Water Drop
,”
Proceedings of the Joint ASME/JSME Thermal Engineering Conference
,
ASME
, New York,
1
, pp.
173
182
.
6.
Toda
,
S.
, 1974, “
A Study of Mist Cooling—2nd Report: Theory of Mist Cooling and Its Fundamental Experiments
,”
Heat Transfer-Jpn. Res.
0096-0802,
3
(
1
), pp.
1
44
.
7.
Akao
,
F.
,
Araki
,
K.
,
Mori
,
S.
, and
Moriyama
,
A.
, 1980, “
Deformation Behaviors of a Liquid Droplet Impinging Onto Hot Metal Surface
,”
Trans. Iron Steel Inst. Jpn.
0021-1583,
20
, p.
737
.
8.
Makino
,
K.
, and
Michiyoshi
,
I.
, 1984, “
The Behavior of a Water Droplet on Heated Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
781
791
.
9.
Chandra
,
S.
, and
Avedisian
,
C. T.
, 1991, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London, Ser. A
1364-5021,
432
, pp.
13
41
.
10.
Manzello
,
S. L.
, and
Yang
,
J. C.
, 2002, “
Experimental Study of High Weber Number Impact of Methoxy-Nonafluorobutane C4F9OCH3 (HFE-7100) and n-Heptane Droplets on a Heated Solid Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
19
), pp.
3961
3971
.
11.
Harlow
,
F. H.
, and
Shannon
,
J. P.
, 1967, “
The Splash of a Liquid Droplet
,”
J. Appl. Phys.
0021-8979,
38
, pp.
3855
3866
.
12.
Trapaga
,
G.
, and
Szekely
,
J.
, 1991, “
Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes
,”
Metall. Trans. B
0360-2141,
22B
, p.
901
914
.
13.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
, 1999, “
On a Three-Dimensional Volume Tracking Model of Droplet Impact
,”
Phys. Fluids
1070-6631,
11
, pp.
1406
1417
.
14.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2002, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2229
2242
.
15.
Pasandideh-Fard
,
M.
,
Aziz
,
S. D.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2001, “
Cooling Effectiveness During the Impact of Cold Water Droplets on a Hot Steel Plate: Simulations and Experiments
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
201
210
.
16.
Fukai
,
J.
,
Zhao
,
Z.
, and
Poulikakos
,
D.
, 1993, “
Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface
,”
Phys. Fluids A
0899-8213,
5
, pp.
2588
2599
.
17.
Zhao
,
Z.
,
Poulikakos
,
D.
, and
Fukai
,
J.
, 1996, “
Heat Transfer and Fluid Dynamics During the Collision of a Liquid Droplet on a Substrate: I-Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2771
2789
.
18.
Lass
,
H.
, 1950,
Vector and Tensor Analysis
,
McGraw-Hill
, New York.
19.
Yang
,
L.
,
Liu
,
C.
, and
Shivpuri
,
R.
, 2005, “
Physiothermodynamics of Lubricant Deposition on Hot Die Surfaces
,”
CIRP Ann.
0007-8506,
54
(
1
), pp.
253
256
.
20.
Boersma
,
W. H.
,
Laven
,
J.
, and
Stein
,
H. N. J.
, 1995, “
Computer Simulations of Shear Thickening of Concentrated Dispersions
,”
J. Rheol.
0148-6055,
39
, p.
841
.
21.
Bender
,
J. W.
, and
Wagner
,
N. J. J.
, 1995, “
Optical Measurement of the Contribution of Collodial Forces to the Rheology of Concentrated Suspensions
,”
J. Colloid Interface Sci.
0021-9797,
172
, p.
171
.
22.
FLOW-3D Manual, 2001, Version 8.1, Flow Sciences, Inc., Santa Fe, NM.
You do not currently have access to this content.