This paper investigates nanomachining of single-crystal silicon using an atomic force microscope with a diamond-tip cantilever. To enable nanomachining of silicon, a nanomachining cantilever with a pyramidal diamond tip was developed using a combination of photolithography and hot-filament chemical vapor deposition. Nanomachining experiments on silicon using the cantilever are demonstrated under various machining parameters. The silicon surface can be removed with a rate of several tens to hundreds of nanometers in ductile mode, and the cantilever shows superior wear resistance. The experiments demonstrate successful nanomachining of single-crystal silicon.
1.
Binnig
, G.
, Rohrer
, H.
, Gerber
, Ch.
, and Weibel
, E.
, 1982, “Surface Studies by Scanning Tunneling Microscopy
,” Phys. Rev. Lett.
0031-9007, 49
(1
), pp. 57
–61
.2.
Binnig
, G.
, Quate
, C. F.
, and Gerber
, Ch.
, 1986, “Atomic Force Microscope
,” Phys. Rev. Lett.
0031-9007, 56
(9
), pp. 930
–933
.3.
Eigler
, D. M.
, and Schweizer
, E. K.
, 1990, “Positioning Single Atoms With a Scanning Tunneling Microscope
,” Nature (London)
0028-0836, 344
(5
), pp. 524
–526
.4.
Li
, W.
, Virtanen
, J. A.
, and Pinner
, R. M.
, 1992, “Nanometer-Scale Electrochemical Deposition of Silver on Graphite Using a Scanning Tunneling Microscope
” Appl. Phys. Lett.
0003-6951, 60
(10
), pp. 1181
–1183
.5.
Kolb
, D. M.
, Ullmann
, R.
, and Will
, T.
, 1997, “Nano-Fabrication of Small Copper Clusters on Gold (111) Electrodes by a Scanning Tunneling Microscope
,” Science
0036-8075, 275
, pp. 1097
–1099
.6.
Piner
, R. D.
, Zhu
, J.
, Xu
, F.
, Hong
, S.
, and Mirkin
, C. A.
, 1999, ““Dip-Pen” Nanolithography
,” Science
0036-8075, 283
, pp. 661
–663
.7.
Zhang
, H.
, Jin
, R.
, and Mirkin
, C. A.
, 2004, “Synthesis of Open-Ended, Cylindrical Au-Ag Alloy Nanostructures on a Si∕SiOx Surface
,” Nano Lett.
1530-6984, 4
(8
), pp. 1493
–1495
.8.
Rüetschi
, M.
, Grütter
, P.
, Fünfschilling
, J.
, and Güntherodt
, H. J.
, 1994, “Creation of Liquid Crystal Waveguides With Scanning Force Microscopy
,” Science
0036-8075, 265
, 512
–514
.9.
Pidduck
, A. J.
, Haslam
, S. D.
, Bryan-Brown
, G. P.
, Bannister
, R.
, and Kitely
, I. D.
, 1997, “Control of Liquid Crystal Alignment by Polyimide Surface Modification Using Atomic Force Microscopy
,” Appl. Phys. Lett.
0003-6951, 71
(20
), pp. 2907
–2909
.10.
Dagata
, J. A.
, Schneir
, J.
, Harary
, H. H.
, Evans
, C. J.
, Postek
, C. J.
, and Bennett
, J.
, 1990, “Modification of Hydrogen-Passivated Silicon by a Scanning Tunneling Microscope Operating in Air
,” Appl. Phys. Lett.
0003-6951, 56
(20
), pp. 2001
–2003
.11.
Snow
, E. S.
, and Campbell
, P. M.
, 1995, “AFM Fabrication of Sub-10-Nanometer Metal-Oxide Devices With In Situ Control of Electrical Properties
,” Science
0036-8075, 270
, 1639
–1649
.12.
Chien
, F. S.-S.
, Chang
, J.-W.
, Lin
, S.-W.
, Chou
, Y.-C.
, Chen
, T. T.
, Gwo
, S.
, Chao
, T.-S.
, and Hsieh
, W.-F.
, 2000, “Nanometer-Scale Conversion of Si3N4 to SiOx
,” Appl. Phys. Lett.
0003-6951, 76
(3
), pp. 360
–362
.13.
Gimzewski
, J. K.
, and Moller
, R.
, 1987, “Transition Form the Tunneling Regime to Point Contact Studied Using Scanning Tunneling Microscopy
,” Phys. Rev. B
0163-1829, 36
(2
), pp. 1284
–1287
.14.
McCord
, M. A.
, and Pease
, R. F.
, 1987, “Scanning Tunneling Microscope as a Micromechanical Tool
,” Appl. Phys. Lett.
0003-6951, 50
(10
), pp. 569
–570
.15.
Loenen
, E. J. van
, Dijkkamp
, D.
, Hoeven
, A. J.
, Lenssinck
, J. M.
, and Dieleman
, J.
, 1989, “Nanometer Scale Structuring of Silicon by Direct Indentation
,” J. Vac. Sci. Technol. A
0734-2101, 8
(1
), pp. 574
–576
.16.
Versen
, M.
, Klehn
, B.
, Kunze
, U.
, Reuter
, D.
, and Wieck
, A. D.
, 2000, “Nanoscale Devices Fabricated by Direct Machining of GaAs With an Atomic Force Microscope
,” Ultramicroscopy
0304-3991, 82
(1–4
), pp. 159
–163
.17.
Miyake
, S.
, 1995, “1nm Deep Mechanical Processing of Muscovite Mica by Atomic Force Microscopy
,” Appl. Phys. Lett.
0003-6951, 67
(20
), pp. 2925
–2927
.18.
Fang
, T. H.
, and Chang
, W. J.
, 2003, “Effects of AFM-Based Nanomachining Process on Aluminum Surface
,” J. Phys. Chem. Solids
0022-3697, 64
(6
), pp. 913
–918
.19.
Ashida
, K.
, Morita
, N.
, and Yoshida
, Y.
, 2001, “Study on Nano-Machining Process Using Mechanism of a Friction Force Microscope
,” JSME Int. J., Ser. C
1340-8062, 44
(1
), pp. 244
–253
.20.
Park
, J. W.
, Kawasegi
, N.
, Morita
, N.
, and Lee
, D. W.
, 2004, “Tribonanolithography of Silicon in Aqueous Solution Based on Atomic Force Microscopy
,” Appl. Phys. Lett.
0003-6951, 85
(10
), pp. 1766
–1768
.21.
Park
, J. W.
, Kawasegi
, N.
, Morita
, N.
, and Lee
, D. W.
, 2004, “Mechanical Approach to Nanomachining of Silicon Using Oxide Characteristics Based on Tribo Nanolithography (TNL) in KOH Solution
,” ASME J. Manuf. Sci. Eng.
1087-1357, 126
, pp. 801
–806
.22.
Kawasegi
, N.
, Morita
, N.
, Yamada
, S.
, Takano
, N.
, Oyama
, T.
, and Ashida
, K.
, 2005, “Etch Stop of Silicon Surface Induced by Tribo-Nanolithography
,” Nanotechnology
0957-4484, 16
(8
), pp. 1411
–1414
.23.
Ashida
, K.
, Chen
, L.
, and Morita
, N.
, 2001, “New Maskless Micro-Fabrication Technique of Single Crystal Silicon Using the Combination of Nanometer-Scale Machining and Wet Etching
,” Proc. of 2nd Euspen International Conference
, A.
Balsomo
, C.
Evans
, W.
Knapp
, G.
Mana
, M.
Mortarino
, S.
Sartori
, and E. G.
Thwaite
, eds., Turin, Italy
, Augusta Edizioni Mortarino
, Turin
, pp. 20
–23
.24.
Akita
, S.
, Nishijima
, H.
, Nakayama
, Y.
, Tokumasu
, F.
, and Takeyasu
, K.
, 1999, “Carbon Nanotube Tips for a Scanning Probe Microscope: Their Fabrication and Properties
,” J. Phys. D
0022-3727, 32
(9
), pp. 1044
–1048
.25.
Hafner
, J. H.
, Cheung
, C. L.
, and Lieber
, C. M.
, 1999, “Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips
,” J. Am. Chem. Soc.
0002-7863, 121
(41
), pp. 9750
–9751
.26.
Albrecht
, T. R.
, Akamine
, S.
, Zdeblick
, M. J.
, and Quate
, C. F.
, 1990, “Microfabrication of Integrated Scanning Tunneling Microscope
,” J. Vac. Sci. Technol. A
0734-2101, 8
(1
), pp. 317
–318
.27.
Chu
, J.
, Maeda
, R.
, Itoh.
, T.
, Kataoka
, K.
, and Suga
, T.
, 1999, “Microfabricated Dynamic Scanning Force Microscope Using a Three Dimensional Piezoelectric T-Shape Actuator
,” Jpn. J. Appl. Phys., Part 1
0021-4922, 38
(12B
), pp. 7180
–7184
.28.
Iwata
, N.
, Wakayama
, T.
, and Yamada
, S.
, 2004, “Establishment of Basic Process to Fabricate Full GaAs Cantilever for Scanning Probe Microscope Applications
,” Sens. Actuators, A
0924-4247, A111
(1
), pp. 26
–31
.29.
Kawakatsu
, H.
, Saya
, D.
, Kato
, A.
, Fukushima
, K.
, Toshiyoshi
, H.
, and Fujita
, H.
, 2002 “Millions of Cantilevers for Atomic Force Microscopy
,” Rev. Sci. Instrum.
0034-6748, 73
(3
), pp. 1188
–1192
.30.
Zhang
, M.
, Bullen
, D.
, Chung
, S. W.
, Hong
, S.
, Ryu
, K. S.
, Fan
, Z. F.
, Mirkin
, C. A.
, and Liu
, C.
, 2002, “A MEMS Nanoplotter With High-Density Parallel Dip-Pen Nanolithography Probe Arrays
,” Nanotechnology
0957-4484, 13
(2
), pp. 212
–217
.31.
Bae
, J. H.
, Ono
, T.
, and Esashi
, E.
, 2003, “Scanning Probe With an Integrated Diamond Heater Element for Nanolithography
,” Appl. Phys. Lett.
0003-6951, 82
(5
), pp. 814
–816
.32.
Kuschnereit
, R.
, Hess
, P.
, Albert
, D.
, and Kulisch
, W.
, 1998, “Density and Elastic Constants of Hot-Filament-Deposited Polycrystalline Diamond Films: Methane Concentration Dependence
,” Thin Solid Films
0040-6090, 312
(1–2
), pp. 66
–72
.33.
Unno
, K.
, Shibata
, T.
, and Makino
, E.
, 2001, “Micromachining of Diamond Probes for Atomic Force Microscopy Applications
,” Sens. Actuators, A
0924-4247, A88
(3
), pp. 247
–255
.34.
Oesterschulze
, E.
, Malave
, A.
, Keyser
, U. F.
, and Haug
, R. J.
, 2002, “Diamond Cantilevers With Integrated Tip for Nanomachining
,” Diamond Relat. Mater.
0925-9635, 11
(3–6
), pp. 667
–671
.35.
Kulisch
, W.
, Malave
, A.
, Lippold
, G.
, Scholz
, W.
, Mihalcea
, C.
, and Oesterschulze
, E.
, 1997 “Fabrication of Integrated Diamond Cantilevers With Tips for SPM Applications
” Diamond Relat. Mater.
0925-9635, 6
(5–7
), pp. 906
–911
.36.
Bhushan
, B.
, and Koinkar
, V. N.
, 1994, “Tribological Studies of Silicon for Magnetic Recording Applications
,” J. Appl. Phys.
0021-8979, 75
(10
), pp. 5741
–5746
.37.
Unno
, K.
, Kitamoto
, Y.
, Shibata
, T.
, and Makino
, E.
, 2001, “Smart Nano-Machining and Measurement System With Semiconductive Diamond Probe
,” Smart Mater. Struct.
0964-1726, 10
(4
), pp. 730
–735
.38.
Seidel
, H.
, Csepregi
, L.
, and Heuberger
, A.
, 1990, “Anisotropic Etching of Crystalline Silicon in Alkaline Solution, I. Orientation Dependence and Behavior of Passivation Layers
,” J. Electrochem. Soc.
0013-4651, 137
(11
), pp. 3612
–3626
.39.
Elwenspoek
, M.
, and Jansen
, H. V.
, 1998, Silicon Micromachining
, Cambridge University Press
, Cambridge, England
.40.
Petersen
, K. E.
, 1982, “Silicon as a Mechanical Material
,” Proc. IEEE
0018-9219, 70
(5
), pp. 420
–457
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.