The influence of the machine specific instantaneous current wave forms on weld nugget dimensions and weld strength is investigated over six spot welding machines. It is observed that the nature of the real-time current wave forms corresponding to a common rms value can vary in different ac spot welding machines. The variations exist in the values of peak current and in the current-on and -off times in every ac cycle. It is observed that real-time current wave form involving higher peak current leads to slightly larger weld nugget diameter compared to wave form with smaller peak current even if the overall rms value remains similar. The real-time current wave form from a medium frequency dc confirms to a fast rise to the set weld current and remains steady for the complete weld time. A detailed experimental study has depicted that the real-time ac wave forms especially with high peak values and sharp rise characteristics offer a relatively smaller permissible range of weld currents compared to the wave forms with relatively flatter characteristics. The steady instantaneous current wave form confirming to the medium frequency dc machine has facilitated a larger permissible range of weld current. A numerical analysis of the spot welding process based on finite element process is carried out using both the instantaneous current wave forms and the corresponding rms values of weld current. The predicted weld dimensions using instantaneous current wave forms have showed slightly better agreement with the corresponding measured weld dimensions.

1.
Yamamoto
,
T.
, and
Okudo
,
T.
, 1971, “
A Study of Spot Welding of Heavy Gauge Mild Steel
,”
Weld. World
0043-2288,
9
, pp.
234
255
.
2.
Gould
,
J. E.
, 1987, “
An Examination of Nugget Development During Spot Welding Using Both Experimental and Analytical Techniques
,”
Weld. J. (Miami, FL, U.S.)
0043-2296
66
, pp.
1s
10s
.
3.
Nishiguchi
,
K.
, and
Matsuyama
,
K.
, 1987, “
Influence of Current Wave Form on Nugget Formation Phenomenon When Spot Welding Thin Steel Sheets
,”
Weld. World
0043-2288,
25
, pp.
222
244
.
4.
Cho
,
H. S.
, and
Cho
,
Y. J.
, 1989, “
A Study of the Thermal Behaviour in Resistance Spot Welds
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
68
, pp.
236s
244s
.
5.
Han
,
Z.
,
Orozco
,
J.
,
Indacochea
,
J. E.
, and
Chen
,
C. H.
, 1989, “
Resistance Spot Welding: A Heat Transfer Study
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
68
, pp.
363s
371s
.
6.
Wei
,
P. S.
, and
Ho
,
C. Y.
, 1990, “
Axisymmetric Nugget Growth During Resistance Spot Welding
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
309
316
.
7.
Wei
,
P. S.
, and
Yeh
,
C. Y.
, 1991, “
Factors Affecting Nugget Growth With Mushy-Zone Phase Change During Resistance Spot Welding
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
643
649
.
8.
Wei
,
P. S.
,
Wang
,
S. C.
, and
Lin
,
M. S.
, 1996, “
Transport Phenomena During Resistance Spot Welding
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
762
773
.
9.
Nied
,
H. A.
, 1984, “
The Finite Element Modelling of the Resistance Spot Welding Process
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
63
, pp.
123s
132s
.
10.
Tsai
,
C. L.
,
Jammal
,
O. A.
,
Papritan
,
J. C.
, and
Dickinson
,
D. W.
, 1992, “
Modelling of Resistance Spot Weld Nugget Growth
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
71
, pp.
47s
54s
.
11.
Gupta
,
O. P.
, and
De
,
A.
, 1998, “
An Improved Numerical Modelling for Resistance Spot Welding Process and its Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
246
252
.
12.
Huh
,
H.
, and
Kang
,
W. J.
, 1997, “
Analysis of Electric Resistance Spot Welding Process by a 3-D Finite Element Method
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
672
677
.
13.
Bowers
,
R. J.
,
Sorensen
,
C. D.
, and
Eagar
,
T. W.
, 1990, “
Electrode Geometry in Resistance Spot Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
69
, pp.
45s
51s
.
14.
Browne
,
D. J.
,
Chandler
,
H. W.
,
Evans
,
J. T.
, and
Wen
,
J.
, 1995, “
Computer Simulation of Resistance Spot Welding in Aluminium. Part I
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
74
, pp.
339s
344s
.
15.
Browne
,
D. J.
,
Chandler
,
H. W.
,
Evans
,
J. T.
,
James
,
P. S.
,
Wen
,
J.
, and
Newton
,
C. J.
, 1995, “
Computer Simulation of Resistance Spot Welding in Aluminium. Part II
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
74
, pp.
417s
422s
.
16.
Murakawa
,
H.
,
Kimura
,
H.
, and
Ueda
,
Y.
, 1995, “
Weldability Analysis of Spot Welding on Aluminium Using FEM
,”
Trans. Jpn. Weld. Soc.
0385-9282,
24
, pp.
101
111
.
17.
Khan
,
J. A.
,
Xu
,
L.
, and
Chao
,
Y. Z.
, 1999, “
Prediction of Nugget Development During Resistance Spot Welding Using Coupled Thermal-Electrical-Mechanical Model
,”
Sci. Technol. Weld. Joining
1362-1718,
4
, pp.
201
207
.
18.
Khan
,
J. A.
,
Xu
,
L.
,
Chao
,
Y. J.
, and
Broach
,
K.
, 2000, “
Numerical Simulation of Resistance Spot Welding Process
,”
Numer. Heat Transfer
0149-5720,
37
, pp.
425
446
.
19.
De
,
A.
, 2002, “
Finite Element Modelling of Resistance Spot Welding of Aluminium With Spherical Tip Electrodes
,”
Sci. Technol. Weld. Joining
1362-1718,
7
, pp.
119
124
.
20.
De
,
A.
,
Thaddeus
,
M. P.
, and
Dorn
,
L.
, 2003, “
Numerical Modelling of Resistance Spot Welding of Aluminium Alloy
,”
ISIJ Int.
0915-1559,
43
, pp.
238
244
.
21.
Dorn
,
L.
, and
Xu
,
P.
, 1992, “
Relation Between Static and Dynamic Machine Properties in Resistance Spot Welding
,”
Welding and Cutting
,
44
, pp.
14
18
.
22.
Dorn
,
L.
, and
Xu
,
P.
, 1993, “
Influence of the Mechanical Properties of Resistance Welding Machines on the Quality of Spot Welding
,”
Welding and Cutting
,
45
, pp.
12
16
.
23.
Zhang
,
H.
, 1999, “
Expulsion and its Influence on Weld Quality
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
78
, pp.
373s
380s
.
24.
Tang
,
H.
,
Hou
,
W.
,
Hu
,
S. J.
, and
Zhang
,
H. Y.
, 2000, “
Force Characteristics of Resistance Spot Welding of Steels
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
79
, pp.
175s
183s
.
25.
Tang
,
H.
,
Hou
,
W.
,
Hu
,
S. J.
,
Zhang
,
H. Y.
,
Feng
,
Z.
, and
Kimchi
,
M.
, 2003, “
Influence of Welding Machine Mechanical Characteristics on the Resistance Spot Welding and Weld Quality
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
82
, pp.
116s
124s
.
26.
Senkara
,
J.
,
Zhang
,
H.
, and
Hu
,
S. J.
, 2004, “
Expulsion Prediction in Resistance Spot Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
83
, pp.
123s
132s
.
You do not currently have access to this content.