The machinability of a polycarbonate nanocomposite containing multiwalled carbon nanotubes is investigated and contrasted with its base polymer and with a conventional carbon fiber composite. The material microstructures are characterized using transmission electron and scanning electron microscopy methods. Micro-endmilling experiments are conducted on the three materials. Chip morphology, machined surface characteristics, and the nature of the cutting forces are employed as machinability measures for comparative purposes. Polycarbonate chips are seen to transition from being discontinuous to continuous as the feed-per-tooth (FPT) increases, while, at all FPT values the nanocomposite is seen to form comparatively thicker continuous chips. The nanocomposite and the carbon fiber composite are seen to have the lowest and the highest magnitudes, respectively, for both the surface roughness and cutting forces. Shearing along the nanotube-polymer interface and better thermal conductivity are speculated to be the mechanisms responsible for the observations seen in the nanocomposite.

1.
Du
,
F.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
, 2003, “
Coagulation Method for Preparing Single-Walled Carbon Nanotube/Poly (Methyl Methacrylate) Composites and Their Modulus, Electrical Conductivity, and Thermal Stability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
41
, pp.
3333
3338
.
2.
Stewart
,
R.
, 2004, “
Nanocomposites: Microscopic Reinforcements Boost Polymer Performance
,”
Plast. Eng. (N. Y.)
1040-2527,
60
, pp.
22
29
.
3.
Kymakis
,
E.
,
Alexandou
,
I.
, and
Amaratunga
,
G. A.
, 2001, “
Single-Walled Carbon Nanotube-Polymer Composites: Electrical, Optical and Structural Investigation
,”
Synth. Met.
0379-6779,
127
, pp.
59
62
.
4.
Thostenson
,
E T.
.
,
Zhifeng
,
R.
, and
Tsu-Wei
,
C.
, 2001, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
1899
1912
.
5.
Colligan
,
K.
, and
Ramulu
,
M.
, 1992, “
An Experimental Investigation Into Pitting of Hole Surfaces When Drilling Graphite/Epoxy Materials
,” American Society of Mechanical Engineers, Materials Division (Publication) Processing, Fabrication, and Manufacturing of Composite Materials, Vol. 35, pp.
11
25
.
6.
Konig
,
W.
,
Wulf
,
C.
,
Grass
,
P.
, and
Willerscheid
,
H.
, 1985, “
An Analysis of Drilling of Composite Materials
,”
CIRP Ann.
0007-8506,
34
, pp.
537
548
.
7.
Dipaolo
,
G.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 1996, “
An Experimental Investigation of the Crack Growth Phenomenon For Drilling of Fiber Reinforced Composite Materials
,”
J. Eng. Ind.
0022-0817,
118
, pp.
104
110
.
8.
Puw
,
H. Y.
, and
Hocheng
,
H.
, 1993, “
Machinability Test of Carbon Fiber-Reinforced Plastics in Milling
,”
Mater. Manuf. Processes
1042-6914,
8
, pp.
717
729
.
9.
Bhatnagar
,
N.
,
Ramakrishnan
,
N.
,
Naik
,
N. K.
, and
Komanduri
,
R.
, 1995, “
On the Machining of Fiber Reinforced Plastic (FRP) Composite Laminate
,”
Int. J. Mach. Tools Manuf.
0890-6955,
35
, pp.
701
716
.
10.
Higgins
,
B. A.
, and
Brittain
,
W. J.
, 2005, “
Polycarbonate Carbon Nanofiber Composites
,”
Eur. Polym. J.
0014-3057,
41
, pp.
889
893
.
11.
Vogler
,
M.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2003, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
202
209
.
12.
Frados
,
J.
, 1976,
Plastic Engineering Handbook of the Society of Plastics Industry Inc.
,
van Nostrand Reinhold
, New York, p.
713
.
13.
Kobayashi
,
A.
, 1967,
Machining of Plastics
,
McGraw-Hill Inc.
, New York, pp.
1
35
.
14.
Shih
,
J. A.
,
Luo
,
J.
,
Lewis
,
M. A.
, and
Strenkowski
,
J. S.
, 2004, “
Chip Morphology and Forces in End Milling of Elastomers
,”
Trans. ASME
0097-6822,
126
, pp.
124
130
.
15.
Horne
,
J. G.
, 1978, “
A New Model for Initial Chip Curl in Continuous Cutting
,”
J. Mech. Eng. Sci.
0022-2542,
20
, pp.
739
745
.
16.
Childs
,
T. H. C.
, and
Rowe
,
G. W.
, 1973, “
Physics in Metal Cutting
,”
Rep. Prog. Phys.
0034-4885,
36
, pp.
223
288
.
17.
Li
,
X.
,
Guan
,
W.
,
Yan
,
H.
, and
Huang
,
L.
, 2004, “
Fabrication and Atomic Force Microscopy/Friction Force Microscopy (AFM/FFM) Studies of Polyacrylamide-Carbon Nanotubes (PAM-CNTs) Copolymer Thin Films
,”
Mater. Chem. Phys.
0254-0584,
88
, pp.
53
58
.
18.
Enomoto
,
K.
,
Yasuhara
,
T.
,
Kitakata
,
S.
,
Murakami
,
H.
, and
Ohtake
,
N.
, 2004, “
Frictional Properties of Carbon Nanofiber Reinforced Polymer Matrix Composites
,”
New Diamond Front. Carbon Technol.
1344-9931,
14
, pp.
11
20
.
19.
Kim
,
C. J.
,
Bono
,
M.
, and
Ni
,
J.
, 2002, “
Experimental Analysis of Chip Formation in Micro-Milling
,”
Trans. NAMRI/SME
1047-3025,
30
, pp.
247
254
.
20.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
, 1996, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
0924-0136,
62
, pp.
327
330
.
21.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
On the Modeling and Analysis of Machining Performance in Micro-End Milling, Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
685
694
.
22.
Waldrof
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 1999, “
An Evaluation of Ploughing Models for Orthogonal Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
, pp.
550
558
.
23.
Ajayan
,
P. M.
,
Stephan
,
O.
,
Colliex
,
C.
, and
Trauth
,
D.
, 1994, “
Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite
,”
Science
0036-8075,
265
, pp.
1212
1214
.
24.
Pwu
,
H. Y.
, and
Hocheng
,
H.
, 1998, “
Chip Formation Model of Cutting Fiber-Reinforced Plastics Perpendicular to Fiber Axis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
192
196
.
25.
Rahman
,
M.
,
Ramakrishna
,
S.
,
Prakash
,
J. R. S.
, and
Tan
,
D. C. G.
, 1999, “
Machinability Study of Carbon Fiber Reinforced Composite
,”
J. Mater. Process. Technol.
0924-0136,
89–90
, pp.
292
297
.
26.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
, 2000, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
0003-6951,
76
, pp.
2868
2870
.
You do not currently have access to this content.