Abstract

This paper describes an algorithmic strategy to facilitate the generation of multicomponent software tools for computer-aided manufacturing (CAM) and virtual manufacturing (VM). Components that are often used to build CAM and VM applications include a wide range of domain-specific knowledge sources and also more general utility components with often very heterogeneous characteristics. The identification of a suitable and compatible set of these components is the first and arguably most important step during the development process of any CAM or VM application. This paper presents an algorithmic strategy that automates this development step by solving a time-expanded network problem, referred to as the component set identification (CSI) problem. A definition of the CSI problem, a mathematical formulation, a solution procedure, and some computational results are presented. Finally, an application to predict hole quality in drilling is used to illustrate the functionality of the proposed algorithmic strategy.

1.
Yu
,
J.
,
Lotfi
,
S.
,
Ishii
,
K.
, and
Trageser
,
A.
, 1993, “
Process Selection for the Design of Aluminum Components
,”
ASME Computers in Engineering
,
1
, pp.
181
188
.
2.
Smith
,
C.
, 1999, “
The Manufacturing Advisory Service: Web Based Process and Material Selection
,” Ph.D. thesis, University of California, Berkeley.
3.
Wright
,
P.
, and
Dornfeld
,
D.
, 1998, “
Cybercut: A Networked Manufacturing Services
,”
Trans. NAMRC/SME
,
XXVI
, pp.
218
286
.
4.
Stori
,
J.
, and
King
,
C.
, 1999, “
Integration of Process Simulation in Machining Parameter Optimization
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
1
), pp.
134
143
.
5.
ElBaradie
,
M.
, 1997, “
A Fuzzy Logic Model for Machining Data Selection
,”
Int. J. Mach. Tools Manuf.
0890-6955,
37
(
9
), pp.
1353
1372
.
6.
Bless
,
P.
, 1999, “
A Model-Based Machining Advisor for Cutting Parameter Selection in End-Milling
,” Master’s thesis, University of Illinois, Urbana-Champaign.
7.
Kline
,
W.
,
DeVor
,
R.
, and
Shareef
,
I. A.
, 1982, “
The Prediction of Surface Accuracy in End-Milling
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
272
278
.
8.
Fu
,
H.
,
DeVor
,
R.
, and
Kapoor
,
S.
, 1984, “
A Mechanistic Model for Prediction of the Force System in Face-Milling Operations
,”
ASME J. Eng. Ind.
0022-0817,
106
, pp.
81
88
.
9.
Metcut Research Associates Machining Data Handbook
, 1990,
Machinability Data Center
,
Otto Zimmermann and Sons Co. Inc.
, Newport, KY.
10.
SME
, 1983,
Tool and Manufacturing Engineers Handbook
, Vol.
1
,
Society of Manufacturing Engineers
, Dearborn, MI.
11.
Vitanov
,
V.
, 1995. “
An Expert System Shell for the Selection of Metal Cutting Parameters
,”
J. Mater. Process. Technol.
0924-0136,
55
, pp.
111
116
.
12.
NIST
, 1992,
Product Data Representation and Exchange
, Tech. Rep. ISO 10303-1,
National Institute of Standards
.
13.
Lee
,
J.
,
Gruninger
,
M.
,
Jin
,
Y.
,
Malone
,
T.
,
Tate
,
A.
, and
Yost
,
G.
, 1998, “
The Pif Process Interchange Format and Framework
,”
Knowledge Eng. Rev.
,
13
, pp.
91
120
.
14.
Lubell
,
J.
, and
Schlenhoff
,
C.
, 1999, “
Process Representation Using Architectual Forms: Accentuating the Positive
,”
Proc. of MarkUp Technologies Conf.
15.
Catron
,
B.
, and
Ray
,
S.
, 1991, “
Alps: A Language for Process Specification
,”
Int. J. Comput. Integr. Manuf.
,
4
, pp.
105
113
.
16.
Fox
,
M.
, 1992, “
The Tove Project: A Common-Sense Model of the Enterprise
,”
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems Lecture Notes in Artificial Intelligence Biometrical Gentics
,
F.
Belli
and
F.
Radermacher
, eds.,
Springer-Verlag
, Berlin, pp.
25
34
.
17.
Uschold
,
M.
,
King
,
M.
,
Morales
,
S.
, and
Zorgios
,
Y.
, 1998, “
The Enterprise Ontology
,”
Knowledge Eng. Rev.
,
13
.
18.
Dahl
,
O.
,
Myrhaug
,
B.
, and
Nygaard
,
K.
, 1970,
Simula Common Base Language
, Tech. Rep. 22,
Norwegian Computing Center
.
19.
Cheng
,
B. H. C.
, and
Jeng
,
J.-J.
, 1997, “
Reusing Analogous Components
,”
IEEE Trans. Knowl. Data Eng.
1041-4347,
9
(
2
), pp.
341
349
.
20.
Wooldridge
,
M.
, and
Jennings
,
N.
, 1995, “
Intelligent Agents: Theory and Practice
,”
Knowledge Eng. Rev.
,
10
, pp.
330
337
.
21.
Intelligent Manufacturing System Group
, www.ims.orgwww.ims.org
22.
Object Management Group
, www.omg.orgwww.omg.org
23.
Virtual Factory Laboratory
,
Georgia Institute of Technology
, http://www.isye.gatech.edu/vfl/http://www.isye.gatech.edu/vfl/
24.
Berkeley Manufacturing Institute
,
University of California at Berkeley
, http://www.me.berkeley.edu/http://www.me.berkeley.edu/
25.
Bless
,
P.
,
DeVor
,
R.
, and
Kapoor
,
S.
, 2002, “
An Architecture for the Development of Multi-Component Software Tools for Virtual Manufacturing
,”
Proc. of ASME Int. Mech. Eng. Congress and Exposition
,
ASME
, New York.
26.
Hwang
,
F. K.
,
Richards
,
D. S.
, and
Winter
,
P.
, 1992,
The Steiner Tree Problem, Annals of Discrete Mathematics
,
North-Holland
, Amsterdam.
27.
Kolisch
,
R.
, and
Padman
,
R.
, 2001, “
An Integrated Survey of Deterministic Project Scheduling
,”
Omega
0305-0483,
29
(
3
), pp.
249
272
.
28.
Garey
,
M.
, and
Johnson
,
D.
, 1979,
Computers and Intractability-A Guide to the Theory of NP-Completeness
,
Freeman
, New York.
29.
The Virtual Machine Tool Project, University of Illinois at Urbana-Champaign, Department of Mechanical and Industrial Engineering, www.knowledgesources.orgwww.knowledgesources.org
30.
Gupta
,
K.
,
Ozdoganlar
,
O.
,
Kapoor
,
S.
, and
DeVor
,
R.
, 2003, “
Modeling and Prediction of Hole Profile in Drilling, Part 1: Modeling Drill Dynamics in the Presence of Drill Alignment Errors
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
1
), pp.
6
13
.
31.
Gupta
,
K.
,
Ozdoganlar
,
O.
,
Kapoor
,
S.
, and
DeVor
,
R.
, 2003, “
Modeling and Prediction of Hole Profile in Drilling, Part 2: Modeling Hole Profile
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
1
), pp.
14
20
.
You do not currently have access to this content.