The need for predicting material microstructure and hardness in hard turned surfaces becomes very urgent in that hard turning is adopted by industries as a finishing process, and the produced surface integrity, including microstructure and hardness, is well known to be a determining factor for part service performance. This study focuses on the prediction of material softening and is composed of two parts, namely, the construction of material softening model based on thermal history and the prediction of thermal history by finite element modeling of hard turning. In this part of the research, three material softening models based on thermal activation concept are proposed and compared. The most suitable model is selected for the work material, hardened AISI 52100 steel. The model prediction demonstrates excellent agreement with the hardness measurement on the specimens with isothermal or anisothermal treatments. For the isothermal treatments, the average prediction error, compared with the measured hardness, is 10.78kgmm2. As for the anisothermal treatments, the average error is 13.79kgmm2. The softening model provides a fundamental for the final prediction of material softening in hard turned surfaces.

1.
Liu
,
C. R.
, and
Mittal
,
S.
, 1995, “
Single Step Super-Finishing Resulting in Superior Surface Integrity
,”
J. Manuf. Syst.
0278-6125,
14
, pp.
124
133
.
2.
Liu
,
C. R.
, and
Agha
,
S.
, 1997, “
Experimental Study of the Pre-Stressing Capability Through Residual Stress Generation in Super-Finish Machining of Hardened Steel
,”
Proceedings of the International Mechanical Engineering Congress
.
3.
Harris
,
T. A.
, 1991,
Rolling Bearing Analysis
,
Wiley
, New York.
4.
Agha
,
S.
, and
Liu
,
C. R.
, 2000, “
Experimental Study on the Performance of Superfinish Hard Turned Surfaces in Rolling Contact
,”
Wear
0043-1648,
244
, pp.
52
59
.
5.
Griffiths
,
B. J.
, and
Furze
,
D. C.
, 1987, “
Tribological Advantages of White Layers Produced by Machining
,”
ASME J. Eng. Ind.
0022-0817,
109
, pp.
338
342
.
6.
Eda
,
H.
,
Kishi
,
K.
, and
Hashimoto
,
S.
, 1981, “
The Formation Mechanism of Ground White Layers
,”
Bull. JSME
0021-3764,
24
(
190
), pp.
743
747
.
7.
Bulpett
,
R.
, 1992, “
The Characterization of White-Etching Layers Formed on Engineering Steels
,” Ph.D. dissertation, Brunel University.
8.
Shaw
,
M. C.
, and
Vyas
,
A.
, 1994, “
Heat-Affected Zones in Grinding Steel
,”
CIRP Ann.
0007-8506,
43
(
1
), pp.
279
282
.
9.
Tonshoff
,
H. K.
,
Wobker
,
H. G.
, and
Brandt
,
D.
, 1995, “
Hard Turning—Influences on the Workpiece Properties
,”
Transactions of NAMRI/SME
,
XXIII
, pp.
215
220
.
10.
Tomlinson
,
W. J.
, 1991, “
The Effect of Workpiece Speed and Grinding-Wheel Condition on the Thickness of White Layers Formed on EN.24 Ground Surfaces
,”
J. Mater. Process. Technol.
0924-0136,
25
, pp.
105
110
.
11.
Berns
,
H.
,
Segtrop
,
K.
, and
Theisen
,
W.
, 1993, “
Surface Integrity of Hard Alloy After Machining using PCBN
,”
Proceedings of the 1st International Conference on Computer Methods and Experimental Measurements for Surface Treatment Effects
, pp.
293
303
.
12.
El-Wardany
,
T. I.
,
Kishawy
,
H. A.
, and
Elbestawi
,
M. A.
, 2000, “
Surface Integrity of Die Material in High Speed Hard Machining. I. Micrographical Analysis
,”
J. Manuf. Sci. Eng.
1087-1357,
122
(
4
), pp.
620
631
.
13.
Okusa
,
K.
,
Takahashi
,
H.
, and
Nishizawa
,
M.
, 1978, “
Behaviour of White Layer During Cutting of Iron and Steels
,”
Bull. Jpn. Soc. Precis. Eng.
0582-4206,
12
(
4
), pp.
171
176
.
14.
Barbacki
,
A.
, and
Kawalec
,
M.
, 1997, “
Structural Alterations in the Surface Layer During Hard Machining
,”
J. Mater. Process. Technol.
0924-0136,
64
, pp.
33
39
.
15.
Chou
,
Y. K.
, 2002, “
Surface Hardening of AISI 4340 Steel by Machining: A Preliminary Investigation
,”
J. Mater. Process. Technol.
0924-0136,
124
(
1–2
), pp.
171
177
.
16.
Wang
,
J. Y.
, 1998, “
A New Methodology for Analyzing the Heat Transfer and Thermal Damage Considering Tool Flank Wear in Finish Hard Machining
,” Ph.D. dissertation, Purdue University.
17.
Abrao
,
A. M.
, and
Aspinwall
,
D. K.
, 1996, “
The Surface Integrity of Turned and Ground Hardened Bearing Steel
,”
Wear
0043-1648,
196
, pp.
279
284
.
18.
Shi
,
J.
, and
Liu
,
C. R.
, 2004, “
Decomposition of Thermal and Mechanical Effects on Microstructure and Hardness of Hard Turned Surface
,”
J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
264
273
.
19.
Grossman
,
M. A.
, and
Bain
,
E. C.
, 1964,
Principle of Heat Treatment
, Metals Park, OH, ASM.
20.
Jansson
,
B.
, 1991, “
Calculation of Microstructure and Hardness of Hot Rolled Steel Bars
,”
Mater. Sci. Technol.
0267-0836,
7
(
2
), pp.
118
127
.
21.
Blondeau
,
R.
,
Maynier
,
P.
, and
Dollet
,
J.
, 1975, “
Estimation of Hardness, Strength and Elastic Limit of c- and Low-Alloy Steels from their Composition and Heat Treatment
,”
Mem. Sci. Rev. Metall.
0025-9128,
72
(
11
), pp.
759
769
.
22.
Ion
,
J. C.
,
Easterling
,
K. E.
, and
Ashby
,
M. F.
, 1984, “
A Second Report on Diagrams of Microstrcuture and Hardness for Heat-Affected Zones in Welds
,”
Acta Metall.
0001-6160,
32
, pp.
1949
1962
.
23.
Ashby
,
M. F.
, and
Easterling
,
K. E.
, 1984, “
The Transformation Hardening Steel Surfaces by Laser Beam—I
,”
Acta Metall.
0001-6160,
32
(
7
), pp.
1935
1948
.
24.
Wang
,
K. F.
,
Chandrasekar
,
S.
, and
Yang.
,
H. T. Y.
, 1997, “
Experimental and Computational Study of the Quenching of Carbon Steel
,”
J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
257
265
.
25.
Fedoseev
,
O. B.
, and
Malkin
,
S.
, 1991, “
Analysis of Tempering and Rehardening for Grinding of Hardened Steels
,”
ASME J. Eng. Ind.
0022-0817,
113
, pp.
388
394
.
26.
Somljan
,
Bozo
, 1998, “
Numerical Simulation of As-Quenched Hardness in a Steel Specimen of Complex form
,”
Commun. Numer. Methods Eng.
1069-8299,
14
, pp.
277
285
.
27.
Reti
,
T.
, 1999, “
Prediction of As-Quenched Hardness after Rapid Austenitization and Cooling of Surface Hardened Steels
,”
Comput. Mater. Sci.
0927-0256,
15
, pp.
101
112
.
28.
Shi
,
J.
, and
Liu
,
C. R.
, 2003, “
Prediction of Chip Morphology and White Layer in Hard Machining by Finite Element Analysis
,”
International Journal of Advanced Manufacturing Technology
(in press).
29.
Oddy
,
A. S.
, and
McDill
,
J. M. J.
, 1996, “
Numerical Prediction of Microstructure and Hardness in Multicycle Simulation
,”
J. Mater. Eng. Perform.
1059-9495,
5
(
3
), pp.
365
372
.
30.
Murphy
,
S.
, and
Woodhead
,
J. H.
, 1972, “
An Investigation of the Validity of Certain Tempering Parameters
,”
Metall. Trans.
0026-086X,
3
, pp.
727
735
.
31.
Grange
,
R. A.
,
Hribal
,
C. R.
, and
Porter
,
L. F.
, 1977, “
Hardness of Tempered Martensite in Carbon and Low–alloy Steels
,”
Metall. Trans. A
0360-2133,
8
, pp.
1775
1785
.
32.
Alberry
,
P. J.
, 1989, “
Computer Model for Multiple Repair Welds in SA508 Class 2 Alloy
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
68
(
10
), pp.
410
417
.
33.
Hollomo
,
T. H.
, and
Jaffe
,
L. D.
, 1945, “
Time-Temperature Relation in Tempering Steel
,” AIME Technical Publication 1831.
34.
Garg
,
A.
, and
McNelley
,
T. R.
, 1986, “
Estimation of Martensite Carbon Content in As-Quenched AISI 52100 Steel by X–ray Diffraction
,”
Mater. Lett.
0167-577X,
4
(
4
), pp.
214
218
.
35.
Speich
,
G. R.
, and
Taylor
,
K. A.
, 1992, “
Tempering of Ferrous Martensite
,”
Martensite
, edited by
Olson
,
G. B.
, and
Owen
,
W. S.
,
ASM International
.
You do not currently have access to this content.