A parametric study on shape and cross-sectional area of the thin film produced by Laser Chemical Vapor Deposition (LCVD) with a moving laser beam is presented. The problem is formulated in the coordinate system that moves with the laser beam, and, therefore, the problem is a quasi-steady state. The effects of laser scanning velocity, laser power, and radius of the laser beam on the shapes of the deposited film are investigated. A simulation-based correlation of the cross-sectional area is proposed based on the simulation results.

1.
Conley
,
J. G.
, and
Marcus
,
H. L.
,
1997
, “
Rapid Prototyping and Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
811
816
.
2.
Marcus, H. L., Zong, G., and Subramanian, P. K., 1993, “Residual Stresses in Laser Processed Solid Freeform Fabrication,” Residual Stresses in Composite Materials: Measurement, Modeling and Effect on Thermomechanical Properties, E. V. Barrera and I. Dutta, TMS, eds., pp. 257–271.
3.
Jakubenas, K. J., Birmingham, B., Harission, S., Croker, J., Shaarawi, M. S., Tomkins, J. V., Sanchez, J., and Marcus, H., 1997, “Recent Advances in SALD and SALDVI,” Proc. 7th International Conference on Rapid Prototyping, San Francisco, March-April, pp. 60–69.
4.
Jakubenas
,
K. J.
,
Lee
,
Y. L.
,
Shaarawi
,
M. S.
,
Marcus
,
H.
, and
Sanchez
,
J. M.
,
1997
, “
Selective Area Laser Deposition of Titanium Oxide
,”
Rapid Prototyping J.
,
3
, pp.
66
70
.
5.
Harrison
,
S.
, and
Marcus
,
H. L.
, “
Gas-Phase Selective Laser Deposition (SALD) Joining of SiC
,”
Mater. Des.
,
20
, pp.
147
152
1999
.
6.
Mazumder, J., and Kar, A., 1995, Theory and Application of Laser Chemical Vapor Deposition, Plenum, New York.
7.
Duty
,
C. E.
,
Jean
,
D. L.
, and
Lackey
,
W. J.
,
2001
, “
Laser Chemical Vapor Deposition: Materials, Modeling, and Process Control
,”
Int. Mater. Rev.
,
46
, pp.
271
287
.
8.
Jacquot, Y., Zong, G.-S., and Marcus, H. L., 1995, “Modeling of Selective Laser Deposition for Solid Freeform Fabrication,” Proc. 6th Solid Freeform Fabrication Symposium, University of Texas, Austin, pp. 74–82.
9.
Zhang
,
Y.
, and
Faghri
,
A.
,
2000
, “
Thermal Modeling of Selective Area Laser Deposition of Titanium Nitride on a Finite Slab With Stationary and Moving Laser Beams
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3835
3846
.
10.
Lee, Y. L., Tompkins, J. V., Sanchez, J. M., and Marcus, H. L., 1995, “Deposition Rate of Silicon Carbide by Selected Area Laser Deposition,” Proc. 6th Solid Freeform Fabrication Symposium, University of Texas, Austin, pp. 433–439.
11.
Zhang
,
Y.
,
2003
, “
Quasi-Steady State Natural Convection in Laser Chemical Vapor Deposition With a Moving Laser Beam
,”
ASME J. Heat Transfer
,
125
, pp.
429
437
.
12.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC.
13.
Conde
,
O.
,
Kar
,
A.
, and
Mazumder
,
J.
,
1992
, “
Laser Chemical Vapor Deposition of TiN Dot: A Comparison of Theoretical and Experimental Results
,”
J. Appl. Phys.
,
72
, pp.
754
761
.
14.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon, Oxford, UK.
15.
Chase, W. M., 1986, JANAF Thermochemical Tables, 3rd Edition, J. Phys. Chem. Ref. Data, 14, Suppl., (1) .
You do not currently have access to this content.