A surface-finishing method for three-dimensional microchannel structures is proposed. The method utilizes magnetorheological fluid mixed with abrasives as a polishing tool. The influences of the process parameters on the material removal were investigated, and the surface topographies before and after finishing were compared. When a microchannel was finished by proposed method, the roughness of bottom and side surfaces of the silicon channel was reduced by a factor of 5–10, and the pressure drop of a gas flow through the single microchannel was lowered to 26.7% of the pressure drop in an unfinished microchannel. The experimental results demonstrated that the proposed method was effective in finishing of microstructures.
Issue Section:
Technical Papers
1.
Ehmann, K. F., DeVor, R. E., Kapoor, S. G., and Ni, J., 2000, Proc. Micro/Meso-Mechanical Manufacturing, An NSF Sponsored Workshop, Evanston, IL.
2.
Bean
, K. E.
, 1978
, “Anisotropic Etching of Silicon
,” IEEE Trans. Electron Devices
, 25
, pp. 1185
–1193
.3.
Sato
, K.
, Shikida
, M.
, Yamashiro
, T.
, Tsunekawa
, M.
, and Ito
, S.
, 1999
, “Roughening of Single-Crystal Silicon Surface Etched by KOH Water Solution
,” Sens. Actuators, A
, 73
, pp. 122
–130
.4.
Findler, G., Muchow, J., Koch, M., and Munzel, H., 1992, “Temporal Evolution of Silicon Surface Roughness During Anisotropic Etching Processes,” Proc. Micro Electro Mechanical System ’92, Travemunde, IEEE, New York, pp. 62–66.
5.
Campbell
, S. A.
, Cooper
, K.
, Dixon
, L.
, Earwaker
, R.
, Port
, S. N.
, and Schiffrin
, D. J.
, 1995
, “Inhibition of Pyramid Formation in the Etching of Si p〈100〉 in Aqueous Potassium Hydroxide-Isopropanol
,” J. Micromech. Microeng.
, 5
, pp. 2019
–218
.6.
Gad-el-Hak, M., 2002, The MEMS Handbook, CRC Press, Boca Raton, Chap. 19.
7.
Kang
, S. W.
, Chen
, J. S.
, and Hung
, J. Y.
, 1998
, “Surface Roughness of (110) Orientation Silicon Based Micro Heat Exchanger Channel
,” Int. J. Mach. Tools Manuf.
, 38
(5–6), pp. 663
–668
.8.
Park
, J. H.
, Baek
, C. W.
, Jung
, S.
, and Kim
, H. T.
, 2000
, “Novel Micromachined Coplanar Waveguide Transmission Lines for Application in Millimeter-Wave Circuits
,” Jpn. J. Appl. Phys.
, 39
, pp. 7120
–7124
.9.
Klumpp
, A.
, Kuhl
, K.
, Schabe
, U.
, Kaufl
, H. U.
, and Lang
, W.
, 1995
, “Anisotropic Etching for Optical Gratings
,” Sens. Actuators, A
, 51
, pp. 77
–80
.10.
Li
, Y.
, Chen
, D.
, and Yang
, C.
, 2001
, “Sub-Microns Period Grating Couplers Fabricated by Silicon Mold
,” Opt. Laser Technol.
, 33
, pp. 623
–626
.11.
Chou
, S. Y.
, Krauss
, P. R.
, and Renstrom
, P. J.
, 1996
, “Nanoimprint Lithography
,” J. Vac. Sci. Technol.
, 14
(6
), pp. 4129
–4133
.12.
Hu
, Y.
, Werner
, C.
, and Li
, D.
, 2003
, “Influence of Three-Dimensional Roughness on Pressure-Driven Flow Through Micro Channels
,” ASME J. Fluids Eng.
, 125
, pp. 871
–879
.13.
Ge, J., McDavitt, D., Bernecker, J., Miller, S., Ciarlo, D., and Kuzmenko, P., 2002, “Development of Silicon Grisms and Immersion Gratings for High Resolution Infrared Spectroscopy,” Proc. SPIE, Bellingham WA, Vol. 4485, Allen, M. L. et al., eds., pp. 393–405.
14.
Romanofsky, R. R., Bhasin, K. B., Ponchak, G. E., Downey, A. N., and Connolly, D. J., 1985, “An Experimental Investigation of Microstrip Properties on Soft Substrate From 2 to 40GHz,” IEEE MTT-S Digest 85(1), pp. 675–678.
15.
Wu
, H. Y.
, and Cheng
, P.
, 2003
, “An Experimental Study of Convective Heat Transfer in Silicon Micro Channels With Different Surface Conditions
,” Int. J. Heat Mass Transfer
, 46
, pp. 2547
–2556
.16.
Shinmura
, T.
, and Yamaguchi
, H.
, 1993
, “Study on a New Internal Finishing Process by Applying Magnetic Abrasive Machining (Internal Finishing of Stainless Steel Tubings and Clean Gas Bombs)
,” Trans. Jpn. Soc. Mech. Eng., Ser. C
, 59
(560
), pp. 1261
–1267
.17.
Yamaguchi
, H.
, Shinmura
, T.
, and Kuga
, K.
, 1995
, “New Internal Finishing Process Applying Magnetic Abrasive Machining (5th Report, Effects of Magnetic Abrasive Behavior on Finishing Characteristics)
,” Trans. Jpn. Soc. Mech. Eng., Ser. C
, 62
(600
), pp. 3313
–3319
.18.
Yamaguchi
, H.
, and Shinmura
, T.
, 1999
, “Study of the Surface Modification Resulting from an Internal Magnetic Abrasive Finishing Process
,” Wear
, 225–229
, pp. 246
–255
.19.
Childs
, T. H. C.
, and Yoon
, H. J.
, 1992
, “Magnetic Fluid Grinding Cell Design
,” CIRP Ann.
, 41
(1
), pp. 343
–347
.20.
Umehara
, N.
, and Komanduri
, R.
, 1996
, “Magnetic Fluid Grinding of HIP-Si3N4 Rollers
,” Wear
, 192
, pp. 85
–93
.21.
Umehara
, N.
, Kato
, K.
, Mizuguchi
, S.
, and Nakamura
, S.
, 1994
, “Micro Surface Polishing Using Magnetic Fluid in Local Area
,” J. Jpn. Soc. Precis. Eng.
, 60
(11
), pp. 1606
–1610
.22.
Umehara
, N.
, Kato
, K.
, and Watanabe
, J.
, 1989
, “Magnetic Fluid Gridning (3rd Report, Grinding Properties of a Cylinder with a Float)
,” J. Jpn. Soc. Mech. Eng.
, 58
(554
), pp. 3134
–3139
.23.
Kordonski
, W.
, and Golini
, D.
, 1999
, “Progress Update in Magnetorheological Finishing
,” Int. J. Mod. Phys. B
, 13
, pp. 2205
–2212
.24.
Kordonski, W., and Jacobs, S. D., 1995, “Magnetorheological Finishing,” Proc. 5th Int. Conf. ER Fluids & MR Suspensions, Sheffield, W.A. Bullogh, ed., World Scientific, Singapore, pp. 1–12.
25.
Shorey, A. B., 2000, “Mechanisms of Material Removal in Magnetorheological Finishing (MRF) of Glass,” Ph.D. thesis, University of Rochester, New York.
26.
Larson, R. G., 1999, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, Chap. 8.
27.
Lord Corporation, MRF-240BS Data Sheet.
28.
Rosenweig, R. E., 1985, Ferrohydrodynamics, Dover, New York, Chap. 5.
29.
Qu
, W.
, Mala
, M. G.
, and Li
, D.
, 2000
, “Heat Transfer for Water Flow in Trapezoidal Silicon Micro Channels
,” Int. J. Heat Mass Transfer
, 43
, pp. 3925
–3936
.30.
Wu
, H. Y.
, and Cheng
, P.
, 2003
, “An Experimental Study of Convective Heat Transfer in Silicon Micro Channels With Different Surface Conditions
,” Int. J. Heat Mass Transfer
, 46
, pp. 2547
–2556
.Copyright © 2004
by ASME
You do not currently have access to this content.