The response of materials after microscale laser shock peening (μLSP) was experimentally characterized and compared with the theoretical prediction from FEM analysis in microlength level. Since μLSP is predominantly a mechanical process instead of a thermal process, the characterization focuses on mechanical properties and associated microstructures. An X-ray microdiffraction technique was applied on the postpeened single crystal aluminum of (001) and (110) orientations, and an X-ray profile was analyzed by subprofiling and Fourier analysis method. Spatially resolved residual stress and strain deviation was quantified and explained in terms of the heterogeneous dislocation cell structure. In-plane crystal lattice rotation induced by μLSP were measured by electron backscatter diffraction (EBSD) and compared with the FEM simulation. Average mosaic size was evaluated from X-ray profile Fourier analysis and compared with the result from EBSD. Surface strength increase and dislocation cell structure formation were studied. The systematical characterization helps develop more realistic simulation models and obtain better understanding in microlength level.

1.
Walraven
,
J. A.
,
Mani
,
S. S.
,
Fleming
,
J. G.
,
Headley
,
T. J.
,
Kotula
,
P. G.
,
Pimentel
,
A. A.
,
Rye
,
M. J.
,
Tanner
,
D. M.
, and
Smith
,
N. F.
,
2000
, “
Failure Analysis of Tungsten Coated Polysilicon Micromachined Microengines,” MEMS Reliability for Critical Applications
,
Proc. SPIE
,
4180
, pp.
49
57
.
2.
Frederick
,
Kevin M.
, and
Fedder
,
Gary K.
,
2000
, “
Mechanical Effects of Fatigue and Charge on CMOS MEMS,” MEMS Reliability for Critical Applications
,
Proc. SPIE
,
4180
, pp.
108
116
.
3.
Zhang, W., and Yao, Y. L., 2001, “Feasibility Study of Inducing Desirable Residual Stress Distribution in Laser Micromachining,” Trans. North American Manufacturing Research Institution of SME (NAMRC XXIX) 2001, SME, pp. 413–420.
4.
Zhang, W., and Yao, Y. L., 2000, “Improvement of Laser Induced Residual Stress Distributions via Shock Waves,” Proc. ICALEO’00, Laser Materials Processing, Detroit, MI, Vol. 89, pp. E183–192.
5.
Zhang
,
W.
, and
Yao
,
Y. L.
,
2000
, “
Micro Scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
369
378
.
6.
Chen, H. Q., and Yao, Y. L., 2003, “Modeling Schemes, Transiency, and Strain Measurement for Microscale Laser Shock Processing,” Trans. of The North American Manufacturing Research Institution of SME, NAMRC 31, Hamilton, Canada, SME, May, pp. 589–596.
7.
Noyan
,
I. C.
,
Jordan-Sweet
,
J. L.
,
Liniger
,
E. G.
, and
Kaldor
,
S. K.
,
1998
, “
Characterization of Substrate/Thin-Film Interfaces With X-ray Microdiffraction
,”
Appl. Phys. Lett.
,
72
(
25
), pp.
3338
3340
.
8.
Noyan
,
I. C.
,
Wang
,
P.-C
,
Kaldor
,
S. K.
, and
Jordan-Sweet
,
J. L.
,
1999
, “
Deformation Field in Single-Crystal Semiconductor Substrates Caused by Metallization Features
,”
Appl. Phys. Lett.
,
74
(
16
), pp.
2352
2354
.
9.
Hutchinson
,
J. W.
,
2000
, “
Plasticity at the Micron Scale
,”
Int. J. Solids Struct.
,
37
, pp.
225
238
.
10.
Clauer, A. H., and Fairland, B. P., 1979, “
Interaction of Laser-Induced Stress Waves With Metals,” Applications of Lasers in Materials Processing (Ed., E. Metzbower), ASM International, Materials Park, OH, p. 229.
11.
Nalla
,
R. K.
,
Altenberger
,
I.
,
Noster
,
U.
,
Liu
,
G. Y.
,
Scholtes
,
B.
, and
Ritchie
,
R. O.
,
2003
, “
On the Influence of Mechanical Surface Treatments Deep Rolling and Laser Shock Peening on the Fatigue Behavior of Ti-6Al-/4V at Ambient and Elevated Temperatures
,”
Mater. Sci. Eng., A
,
355
, pp.
216
230
.
12.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
.
13.
Asaro
,
R. J.
,
1983
, “
Micromechanics of Crystals and Polycrystals
,”
Adv. Appl. Mech.
,
23
, pp.
1
115
.
14.
Huang, Y., 1991, “A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program,” Mech Report 178,” Divi. of Applied Sciences, Harvard Univ., Cambridge, MA.
15.
Kysar, J. W., 1997, Addendum to “A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program,” Mech Report 178,” Divi. of Engineering and Applied Sciences, Harvard Univ., Cambridge, MA.
16.
ABAQUS/Standard User’s Manual, 2002, Version 6.2, Hibbit, Karlsson, and Sorensen, Inc., Pawtucket, RI.
17.
Rice
,
J. R.
,
1987
, “
Tensile Crack Tip Fields in Elastic-Ideally Plastic Crystals
,”
Mech. Mater.
,
6
(
4
), pp.
317
335
.
18.
Cullity, B. D., 1978, Elements of X-Ray Diffraction, Second Edition, Addison-Wesley, Reading, MA, London, pp. 268–270.
19.
Noyan
,
I. C.
,
Wang
,
P.-C
,
Kaldor
,
S. K.
, and
Jordan-Sweet
,
J. L.
,
2000
, “
Divergence Effects in Monochromatic X-Ray Microdiffraction Using Tapered Capillary Optics
,”
Rev. Sci. Instrum.
,
71
(
5
), pp.
1991
2000
.
20.
SPEC™ X-Ray Diffraction Software, Certified Scientific Software, Cambridge, MA.
21.
HKL Channel 5™ User’s Manual, 2001, HKL Technology, Danbury, CT.
22.
Chen, H. Q., Kysar, J. W., and Yao, Y. L., 2003, “Characterization of Plastic Deformation Induced by Micro Scale Laser Shock Peening,” ASME J. Appl. Mech., (submitted).
23.
Ungar
,
T.
,
Ribarik
,
G.
,
Gubicza
,
J.
, and
Hanak
,
P.
,
1984
, “
X-Ray Line-Broadening Study of the Dislocation Cell Structure in Deformed [001]-Orientated Copper Single Crystals
,”
Acta Metall.
,
32
(
3
), pp.
333
342
.
24.
Warren
,
B. E.
, and
Averbach
,
B. L.
,
1950
, “
The Effect of Cold-Work Distortion on X-Ray Patterns
,”
J. Appl. Phys.
,
21
, pp.
595
599
.
25.
Chen, H. Q., Yao, Y. L., and Kysar, J. W., 2003, “Spatially Resolved Characterization of Residual Stress Induced by Micro Scale Laser Shock Peening,” Proc. of 22nd Int. Congress on Applications of Lasers & Electro-Optics (ICALEO), Conf. on Laser Materials Processing, Section B, Jacksonville, FL, October, pp. 1–10.
26.
Warren, B. E., 1969, X-Ray Diffraction, Addison-Wesley, Reading, MA, Chap. 13.
27.
Noyan, I. C., and Cohen, J. B., 1987, Residual Stress-Measurement by Diffraction and Interpretation, Springer-Verlag Inc., New York, pp. 168–175.
28.
Chen, H. Q., Yao, Y. L., Kysar, J. W., Noyan, I. C., and Wang, Y. N., 2003, “Fourier Analysis of X-Ray Microdiffraction Profiles to Characterize Laser Shock Peened Metals,” Trans. of North American Manufacturing Research Institution of SME, NAMRC 32, Charlotte, NC, June, SME.
29.
Mandel
,
J.
,
1982
, “
Definition of a Frame Suitable to the Study of Anelastic Transformations of Polycrystal
,”
J. Mec. Theor. Appl.
,
1
(
1
), pp.
7
23
.
30.
Meyers, M. A., Armstrong, R. W., and Kirchner, H., 1999, Mechanics and Materials: Fundamentals and Linkages, Wiley, New York, pp. 377–381.
31.
Murr, L. E., 1981, “Microstructure-Mechanical Property Relations,” Shock-Wave and High-Strain-Rate Phenomena in Metals, Plenum Press, New York, pp. 607–671.
32.
Hansen
,
N.
, and
Kuhlmann-Wilsdorf
,
D.
,
1986
, “
Proceedings of the International Conference on Low-Energy Dislocation Structures
,”
Mater. Sci. Eng.
,
81
, pp.
141
152
.
33.
Kratochvil
,
J.
,
1990
, “
Instability Origin of Dislocation Cell Misorientation
,”
Scr. Mater.
,
24
(
7
), pp.
1225
1228
.
34.
Hahner
,
P.
,
1996
, “
A Theory of Dislocation Cell Formation Based on Stochastic Dislocation Dynamics
,”
Acta Mater.
,
44
(
6
), pp.
2345
2352
.
35.
Stouffer, D. C., and Dame, L. T., 1996, Inelastic Deformation of Metals, Wiley, New York, pp. 12–15.
You do not currently have access to this content.