This paper presents a unified framework for best-fitting of complex rigid surface to measured 3-D coordinate data by adjusting its location (position/orientation). For a point expressed in the machine reference frame and a nominal surface represented in its own model frame, a signed point-to-surface distance function is defined, and its properties are investigated, especially, its increment with respect to the differential motion of the surface, up to the second order, is derived. On this basis, localization and profile error evaluation of complex surface are formulated as a nonlinear least-squares problem and nonlinear constrained optimization problem respectively, and sequential approximation algorithms are developed to solve them. The two algorithms have the advantages of implementational simplicity, computational efficiency and robustness. Also strategies for estimating initial solution and compensating probe radius are presented. Examples confirm the validity of the proposed approach.

1.
Sourlier
,
D.
, and
Bucher
,
A.
,
1995
, “
Surface-Independent, Theoretically Exact Bestfit for Arbitrary Sculptured, Complex, or Standard Geometries
,”
Precis. Eng.
,
17
(
2
), pp.
101
113
.
2.
Li
,
Z.
,
Gou
,
J.
, and
Chu
,
Y.
,
1998
, “
Geometric Algorithms for Workpiece Localization
,”
IEEE Trans. Rob. Autom.
,
14
(
6
), pp.
864
878
.
3.
Horn
,
B. K.
,
1984
, “
Close-Form Solution of Absolute Orientation Using Unit Quaternions
,”
J. Opt. Soc. Am.
,
4
(
4
), pp.
629
642
.
4.
Arun
,
K. S.
,
Huang
,
T. S.
, and
Blostein
,
S. D.
,
1987
, “
Least-Squares Fitting of Two 3-D Point Sets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
9
(
3
), pp.
698
700
.
5.
Besl
,
P. J.
, and
Mckay
,
N. D.
,
1992
, “
A Method for Registration of 3D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
6.
Ristic
,
M.
, and
Brujic
,
D.
,
1997
, “
Efficient Registration of NURBS Geometry
,”
Image Vis. Comput.
,
15
, pp.
926
935
.
7.
Li, X. M., Yeung, M, and Li, Z. X., 1996, “An Algebraic Algorithm for Workpiece Localization,” IEEE Int. Conf. Robot. Automat., pp. 152–158.
8.
Sahoo
,
K. C.
, and
Meng
,
C. H.
,
1991
, “
Localization of 3-D Objects Having Complex Sculptured Surfaces Using Tactile Sensing and Surface Description
,”
ASME J. Eng. Ind.
,
113
(
1
), pp.
85
92
.
9.
Patrikalakis
,
N. M.
, and
Bardis
,
L.
,
1991
, “
Localization of Rational B-Spline Surfaces
,”
Eng. Comput.
,
7
, pp.
237
252
.
10.
Bardis
,
L.
,
Jinkerson
,
R. A.
, and
Patrikalakis
,
N. M.
,
1991
, “
Localization for Automated Inspection of Curved Surfaces
,”
Int. J. Offshore Polar Eng.
,
1
(
3
), pp.
228
234
.
11.
Menq
,
C. H.
,
Yau
,
H.
, and
Lai
,
G.
,
1992
, “
Automated Precision Measurement of Surface Profile in CAD-directed Inspection
,”
IEEE Trans. Rob. Autom.
,
8
(
2
), pp.
268
278
.
12.
Huang
,
X.
,
Gu
,
P.
, and
Zernicke
,
R.
,
1996
, “
Localization and Comparison of Two Free-Form Surfaces
,”
Comput.-Aided Des.
,
28
(
12
), pp.
1017
1022
.
13.
Hong, J. W., and Tan, X. L., 1990, “Method and Apparatus for Determining Position and Orientation of Mechanical Objects,” U.S. Patent 5208763.
14.
Turner, D. A., Anderson, I. J., and Mason, J. C., 2000, “An Efficient Separation-of-Variables Approach to Parametric Orthogonal Distance Regression,” Advanced Mathematical & Computational Tools in Metrology, World Scientific Publishing Company, pp. 246–255.
15.
Jinkerson
,
R. A.
,
Abrams
,
S. L.
, and
Bardis
,
L.
,
1993
, “
Inspection and Feature Extraction of Marine Propellers
,”
J. Ship Prod.
,
9
(
2
), pp.
88
106
.
16.
Tucker
,
T. M.
, and
Kurfess
,
T. R.
,
2003
, “
Newton Methods for Parametric Surface Registration: Theory and Experimental Validation
,”
Comput.-Aided Des.
,
35
(
1
), pp.
107
120
.
17.
Gunnarson
,
K. T.
, and
Prinz
,
F. B.
,
1987
, “
CAD Model Based Localization of Parts in Manufacturing
,”
Computer
,
20
(
8
), pp.
66
74
.
18.
Chu
,
Y. X.
,
Gou
,
J. B.
, and
Li
,
Z. X.
,
1999
, “
Workpiece Localization Algorithms: Performance Evaluation and Reliability Analysis
,”
J. Manufact. Syst.
,
18
(
2
), pp.
113
126
.
19.
Gou
,
J. B.
,
Chu
,
Y. X.
, and
Li
,
Z. X.
,
1998
, “
On Symmetric Localization Problems
,”
IEEE Trans. Rob. Autom.
,
14
(
4
), pp.
533
539
.
20.
Yan
,
Z. C.
, and
Menq
,
C. H.
,
1994
, “
Evaluation of Geometric Tolerances Using Discrete Measurement Data
,”
Journal of Design & Manufacturing
,
14
, pp.
215
228
.
21.
Forbes, A. B., 1990, “Least-Squares Best-fit Geometric Elements,” Algorithms for Approximation II, J. C. Mason and M. G. Cox, eds., Chapman and Hall, London, pp. 311–319.
22.
Yau
,
H. T.
, and
Menq
,
C. H.
,
1996
, “
A Unified Least-Squares Approach to the Evaluation of Geometrical Errors Using Discrete Measurement Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
11
), pp.
1269
1290
.
23.
Wang
,
Y.
,
1992
, “
Minimum Zone Evaluation of Form Tolerances
,”
Manuf. Rev.
,
5
(
3
), pp.
213
220
.
24.
Butler, B. P., Forbes, A. B., and Harris, P. M., 1994, “Algorithms for Geometric Tolerance Assessment,” Technical Report DITC 228/94, National Physical Laboratory, UK.
25.
Anthony
,
G. T.
,
Anthony
,
H. M.
, and
Bittner
,
B.
,
1996
, “
Reference Software for Finding Chebyshev Best-fit Geometric Elements
,”
Precis. Eng.
,
19
, pp.
28
36
.
26.
Xiong
,
Y. L.
,
1990
, “
Computer-Aided Measurement of Profile Error of Complex Surfaces and Curves: Theory and Algorithm
,”
Int. J. Mach. Tools Manuf.
,
30
(
3
), pp.
339
357
.
27.
Gou
,
J. B.
,
Chu
,
Y. X.
, and
Li
,
Z. X.
,
1999
, “
Geometric Theory of Form, Profile and Orientation Tolerances
,”
Precis. Eng.
,
23
(
2
), pp.
79
93
.
28.
Choi
,
W.
, and
Kurfess
,
T. R.
,
1999
, “
Dimensional Measurement Data Analysis, Part I: A Zone Fitting Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
238
245
.
29.
Choi
,
W.
, and
Kurfess
,
T. R.
,
1999
, “
Dimensional Measurement Data Analysis, Part II: Minimum Zone Evaluation
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
246
250
.
30.
Zhu
,
L. M.
, and
Ding
,
H.
,
2003
, “
Application of Kinematic Geometry to Computational Metrology: Distance Function Based Heirarchical Algorithms for Cylindricity Evaluation
,”
Int. J. Mach. Tools Manuf.
,
43
(
2
), pp.
203
215
.
31.
Murray, R. M., Li, Z., and Sastry, S. S., 1994, A Mathematical Introduction to Robotic Manipulation, Boca Raton, CRC Press.
32.
Carmo, M. D., 1976, Differential Geometry of Curves and Surfaces, Prentice Hall.
33.
Pottmann
,
H.
,
Perernell
,
M.
, and
Ravani
,
B.
,
1999
, “
An Introduction to Line Geometry With Applications
,”
Comput.-Aided Des.
,
31
(
1
), pp.
3
16
.
34.
Selig
,
J. M.
, and
Rooney
,
J.
,
1989
, “
Reuleaux Pairs and Surfaces That Cannot be Gripped
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
79
87
.
35.
Rimon
,
E.
, and
Burdick
,
J. W.
,
1995
, “
A Configuration Space Analysis of Bodies in Contact: 1st Order Mobility and 2nd Order Mobility
,”
Mech. Mach. Theory
,
30
(
6
), pp.
897
928
.
36.
Nelson, D. D., and Cohen, E., 2000, “Optimization-Based Virtual Surface Contact Manipulation at Force Control Rates,” Proc. IEEE Conf. Virtual Reality, pp. 37–44.
37.
Zhu, L. M., 2002, “Distance Function-Based Models and Algorithms for Fitting of Geometric Elements to Measured Coordinate Points,” Postdoctoral technical report (No. 2002-2), School of Mechanical Science & Engineering, Huazhong University of Science & Technology.
38.
Esat
,
I. I.
, and
Bahai
,
H.
,
2000
, “
Surface Alignment Based on the Moment of Inertia and Improved Least-Squares Methods
,”
Proc. Inst. Mech. Eng.
,
214
, pp.
547
554
.
39.
Zhang
,
Q.
,
Fan
,
K. C.
, and
Li
,
Z.
,
1999
, “
Evaluation Method for Spatial Straightness Errors Based on Minimum Zone Condition
,”
Precis. Eng.
,
23
, pp.
264
272
.
40.
Liu, J., and Wang, X. M., 1996, Saddle Point Programming and Geometric Error Evaluation, Dalian Dalian University of Technology Press.
41.
Carr
,
K.
, and
Ferreira
,
P.
,
1995
, “
Verification of Form Tolerances, Part II: Cylindricity and Straightness of a Median Line
,”
Precis. Eng.
,
17
, pp.
144
156
.
42.
Yau
,
H.-Z.
,
Chen
,
C.-Y.
, and
Wilhelm
,
R. G.
,
2000
, “
Registration and Integration of Multiple Laser Scanned Data for Reverse Engineering of Complex 3D Models
,”
Int. J. Prod. Res.
,
38
(
2
), pp.
269
285
.
43.
Zhang
,
Z.
,
1994
, “
Iterative Point Matching for Registration of Free-Form Curves and Surfaces
,”
Int. J. Comput. Vis.
,
13
, pp.
119
152
.
You do not currently have access to this content.