A new methodology is developed for optimal infeed control of cylindrical plunge grinding cycles. Unlike conventional cycles having a few sequential stages with discrete infeed rates, the new methodology allows for continuous variation of the infeed rate to further reduce the cycle time. Distinctive characteristics of optimal grinding cycles with variable infeed rates were investigated by applying dynamic programming to a simulation of the grinding cycle. The simulated optimal cycles were found to consist of distinct segments with predominant constraints. This provided the basis for an optimal control policy whereby the infeed rate is determined according to the active constraint at each segment of the cycle. Accordingly, the controller is designed to identify the state of the cycle at each sampling instant from on-line measurements of power and size, and to then compute the infeed rate according to the optimal policy associated with that state. The optimization policy is described in this paper, and the controller design and its implementation are presented in the following paper [1].

1.
Dong
,
S.
,
Danai
,
K.
,
Malkin
,
S.
, and
Deshmukh
,
A.
,
2003
, “
Continuous Optimal Infeed Control For Cylindrical Plunge Grinding-Part 2: Controller Design
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
334
340
.
2.
Malkin, S., 1989, Grinding Technology: Theory and Applications of Machining with Abrasives, Society of Manufacturing Engineers, Detroit, Michigan.
3.
To¨nshoff
,
H. K.
,
Zinngrede
,
M.
, and
Kemmerling
,
M.
,
1986
, “
Optimization of Internal Grinding by Microcomputer-Based Force Control
,”
CIRP Ann.
,
35
(
1
), pp.
293
296
.
4.
Jenkins, H. E., 1996, “Process Estimation and Adaptive Control of a Grinding System,” Ph.D. Thesis, Dept. of Mech. Eng., Georgia Institute of Technology, GA.
5.
Brinksmeier
,
E.
,
1991
, “
Self Tuning Adaptive Control System for Grinding Process
,”
CIRP Ann.
,
40
, pp.
355
358
.
6.
Hecker, R. L., and Liang, S. Y., 2000, “Power Feedback Control in Cylindrical Grinding Process,” Proc. of the ASME International Mechanical Engineering Congress and Exhibition, Orlando, Florida, DSC Vol. 69, pp. 713–718.
7.
Hekman, K., Hecker, R., and Liang, S. Y., 2001, “Adaptive Power Control of Cylindrical Traverse Grinding,” Proc. of the 3rd International Conference on Metal Cutting and High Speed Machining, Metz, France, Vol. II, pp. 262–264.
8.
Hahn
,
R. S.
,
1964
, “
Controlled Force Grinding-A New Technique for Precision Internal Grinding
,”
ASME J. Ind.
,
86
, pp.
287
293
.
9.
Koren
,
Y.
,
1997
, “
Control of Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
749
755
.
10.
Gao
,
Y.
, and
Jones
,
B.
,
1992
, “
An Optimum Size and Roundness Adaptive Control Method for the Plunge Grinding Process
,”
J. of Systems and Control Engineering
,
206
, pp.
107
116
.
11.
Gao
,
Y.
,
Jones
,
B.
, and
Webster
,
J.
,
1992
, “
An Integrated Size and Roundness Adaptive Control System for the Plunge Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
32
(
3
), pp.
291
303
.
12.
Allanson
,
D. R.
,
Rowe
,
W. B.
,
Chen
,
X.
, and
Boyle
,
A.
,
1997
, “
Automatic Dwell Control in Computer Numerical Control Plunge Grinding
,”
Proc. Inst. Mech. Eng.
,
211
, pp.
565
575
.
13.
Thomas
,
D. A.
,
Allanson
,
D. R.
,
Moruzzi
,
J. L.
, and
Rowe
,
W. B.
,
1995
, “
In-process Indentification of System Time Constant for the Adaptive Control of Grinding
,”
ASME J. Ind.
,
117
, pp.
116
201
.
14.
Malkin
,
S.
,
1980
, “
Grinding Cycle Optimization
,”
CIRP Ann.
,
30
, pp.
223
226
.
15.
Malkin
,
S.
, and
Koren
,
Y.
,
1984
, “
Optimal Infeed Control for Accelerated Spark-Out in Plunge Grinding
,”
ASME J. Ind.
,
106
, pp.
70
74
.
16.
Webster
,
G.
, and
Zhao
,
Y. W.
,
1990
, “
Time-Optimal Adaptive Control of Plunge Grinding
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
413
421
.
17.
Inasaki
,
I.
,
1991
, “
Monitoring and Optimization of Internal Grinding Process
,”
CIRP Ann.
,
40
, pp.
359
362
.
18.
Allanson
,
D. R.
,
Kelly
,
S.
,
Terry
,
S.
,
Moruzzi
,
J.
, and
Rowe
,
W. B.
,
1989
, “
Coping with Compliance in the Control of Grinding Process
,”
CIRP Ann.
,
38
, pp.
311
314
.
19.
Peters
,
J.
, and
Arens
,
R.
,
1980
, “
Optimization Procedure of Three Phase Grinding Cycles of Series without Intermediate Dressing
,”
CIRP Ann.
,
29
, pp.
195
200
.
20.
Amitay
,
G.
,
Malkin
,
S.
, and
Koren
,
Y.
,
1981
, “
Adaptive Control Optimization of Grinding
,”
ASME J. Ind.
,
103
(
1
), pp.
102
111
.
21.
Xiao
,
G.
,
Malkin
,
S.
, and
Danai
,
K.
,
1993
, “
Autonomous System for Multi-Stage Cylindrical Grinding
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
4
), pp.
667
672
.
22.
Xiao
,
G.
, and
Malkin
,
S.
,
1996
, “
On-Line Optimization of Internal Cylindrical Grinding Cycles
,”
CIRP Ann.
,
45
(
1
), pp.
287
292
.
23.
Rowe
,
W. B.
, and
Yan
,
L.
, “
Application of Artificial Intelligence in Grinding
,”
CIRP Ann.
,
43
(
2
), pp.
521
531
.
24.
Vishnupad
,
P.
, and
Shin
,
Y. C.
,
1998
, “
Intelligence Optimization of Grinding Processes Using Fuzzy Logic
,”
Proc. Inst. Mech. Eng.
,
212
, pp.
647
660
.
25.
Malkin
,
S.
, and
Koren
,
Y.
,
1980
, “
Off-line Grinding Optimization with a Microcomputer
,”
CIRP Ann.
,
29
(
1
), p.
213
219
.
26.
Sonmez
,
A. I.
, and
Baykasoglu
,
A.
,
1999
, “
Dynamic Optimization of Multipass Milling Operation via Geometric Programming
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
297
320
.
27.
Cakir
,
M. C.
, and
Gurarda
,
A.
,
1998
, “
Optimization and Graphical Representation of Machining Conditions in Multi-pass Turning Operations
,”
Computer Integrated Manufacturing System
,
11
(
3
), pp.
157
170
.
28.
Brown, M. L., 1988, “Intelligent Robot Grinding: Planning, Optimization and Control,” Ph.D. Thesis, Massachusetts Institute of Technology.
29.
Chiu
,
N.
, and
Malkin
,
S.
,
1993
, “
Computer Simulation for Cylindrical Plunge Grinding
,”
CIRP Ann.
,
42
(
1
), pp.
383
387
.
You do not currently have access to this content.