In this study, a major design parameter was identified for cold forward extrusion of solid or hollow spur gears by investigating the effect of gear geometries and forming variables on formation of gear teeth by finite element simulations. A limiting extrusion ratio was determined for reducing the likeliness of underfilling in the die cavity. An equivalent radius of the cross-sectional geometry of a gear was also determined to predict the forming load requirement from an axi-symmetric approximation. Based on this approximation, a modified empirical equation was determined for simple determination of forming loads required.
Issue Section:
Technical Papers
Topics:
Design,
Extruding,
Gears,
Geometry,
Simulation,
Spur gears,
Stress,
Engineering simulation,
Friction
1.
Chitkara
, N. R.
, and Bhutta
, M. A.
, 1996
, “Near-Net Shape Forging of Spur Gear Forms: An Analysis and Some Experiments
,” Int. J. Mech. Sci.
, 38
(8–9
), pp. 891
–916
.2.
Osman
, F. H.
, and Bramley
, A. N.
, 1995
, “Preform Design for Forging Rotationally Symmetric Parts
,” CIRP Ann.
, 44
(1
), pp. 227
–230
.3.
Szentmihali
, V.
, Lange
, K.
, Tronel
, Y.
, Chenot
, J. L.
, and Ducloux
, R.
, 1994
, “3-D Finite-Element Simulation of the Cold Forging of Helical Gears
,” J. Mater. Process. Technol.
, 43
, pp. 279
–291
.4.
Mamalis
, A. G.
, Manolakos
, D. E.
, and Baldoukas
, A. K.
, 1996
, “Simulation of the Precision Forging of Bevel Gears Using Implicit and Explicit FE Techniques
,” J. Mater. Process. Technol.
, 57
, pp. 164
–171
.5.
Rahman
, A. R. O. A.
, and Dean
, T. A.
, 1981
, “The Quality of Hot Forged Spur Gear Forms. Part II: Tooth Form Accuracy
,” Int. J. Mach. Tool Des. Res.
, 21
(2
), pp. 129
–141
.6.
Sadeghi
, M. H.
, and Dean
, T. A.
, 1994
, “Precision Forging Straight and Helical Spur Gears
,” J. Mater. Process. Technol.
, 45
, pp. 25
–30
.7.
Doege
, E.
, and Bohnsack
, R.
, 2000
, “Closed Die Technologies for Hot Forging
,” J. Mater. Process. Technol.
, 98
, pp. 165
–170
.8.
Kondo
, K.
, and Ohga
, K.
, 1995
, “Precision Cold Die Forging of a Ring Gear by Divided Flow Method
,” Int. J. Mach. Tools Manuf.
, 35
(8
), pp. 1105
–1113
.9.
Kim
, S. Y.
, and Im
, Y. T.
, 2000
, “Three-Dimensional Finite Element Simulations of Shape Rolling of Bars
,” Int. J. Form. Proc.
, 3
(3–4
), pp. 253
–278
.10.
Han
, C. H.
, and Yang
, D. Y.
, 1988
, “Further Investigation Into Extrusion of Trocoidal Gear Sections Considering Three-Dimensional Plastic Flow
,” Int. J. Mech. Sci.
, 30
(1
), pp. 13
–30
.11.
Yang
, D. Y.
, Kim
, H. S.
, Lee
, C. M.
, and Han
, C. H.
, 1990
, “Analysis of Three-Dimensional Extrusion of Arbitrarily Shaped Tubes
,” Int. J. Mech. Sci.
, 32
(2
), pp. 115
–127
.12.
Altan, T., Oh, S. I., and Gegel, H. L., 1983, Metal Forming: Fundamentals and Applications, American Society for Metals, Ohio.
13.
Kwak
, D. Y.
, Cheon
, J. S.
, and Im
, Y. T.
, 2002
, “Remeshing for Metal Forming Simulations—Part I: Two-Dimensional Quadrilateral Remeshing
,” Int. J. Numer. Methods Eng.
, 53
, pp. 2463
–2500
.14.
Kwak
, D. Y.
, and Im
, Y. T.
, 2002
, “Remeshing for Metal Forming Simulations-Part II: Three-Dimensional Hexahedral Mesh Generation
,” Int. J. Numer. Methods Eng.
, 53
, pp. 2501
–2528
.15.
Lee
, G. A.
, Kwak
, D. Y.
, Kim
, S. Y.
, and Im
, Y. T.
, 2002
, “Analysis and Design of Flat-Die Hot Extrusion Process 1. Three-Dimensional Finite Element Analysis
,” Int. J. Mech. Sci.
, 44
, pp. 915
–934
.16.
Lee
, G. A.
, and Im
, Y. T.
, 2002
, “Analysis and Design of Flat-Die Hot Extrusion Process 2. Numerical Design of Bearing Lengths
,” Int. J. Mech. Sci.
, 44
, pp. 935
–946
.17.
Lawry, M. H., 2000, I-DEAS Master Series™ 2.0 Student Guide, SDRC.
18.
International Cold Forging Group, 1996, Cold Forgeable Steels.
Copyright © 2004
by ASME
You do not currently have access to this content.