In this study, a major design parameter was identified for cold forward extrusion of solid or hollow spur gears by investigating the effect of gear geometries and forming variables on formation of gear teeth by finite element simulations. A limiting extrusion ratio was determined for reducing the likeliness of underfilling in the die cavity. An equivalent radius of the cross-sectional geometry of a gear was also determined to predict the forming load requirement from an axi-symmetric approximation. Based on this approximation, a modified empirical equation was determined for simple determination of forming loads required.

1.
Chitkara
,
N. R.
, and
Bhutta
,
M. A.
,
1996
, “
Near-Net Shape Forging of Spur Gear Forms: An Analysis and Some Experiments
,”
Int. J. Mech. Sci.
,
38
(
8–9
), pp.
891
916
.
2.
Osman
,
F. H.
, and
Bramley
,
A. N.
,
1995
, “
Preform Design for Forging Rotationally Symmetric Parts
,”
CIRP Ann.
,
44
(
1
), pp.
227
230
.
3.
Szentmihali
,
V.
,
Lange
,
K.
,
Tronel
,
Y.
,
Chenot
,
J. L.
, and
Ducloux
,
R.
,
1994
, “
3-D Finite-Element Simulation of the Cold Forging of Helical Gears
,”
J. Mater. Process. Technol.
,
43
, pp.
279
291
.
4.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
, and
Baldoukas
,
A. K.
,
1996
, “
Simulation of the Precision Forging of Bevel Gears Using Implicit and Explicit FE Techniques
,”
J. Mater. Process. Technol.
,
57
, pp.
164
171
.
5.
Rahman
,
A. R. O. A.
, and
Dean
,
T. A.
,
1981
, “
The Quality of Hot Forged Spur Gear Forms. Part II: Tooth Form Accuracy
,”
Int. J. Mach. Tool Des. Res.
,
21
(
2
), pp.
129
141
.
6.
Sadeghi
,
M. H.
, and
Dean
,
T. A.
,
1994
, “
Precision Forging Straight and Helical Spur Gears
,”
J. Mater. Process. Technol.
,
45
, pp.
25
30
.
7.
Doege
,
E.
, and
Bohnsack
,
R.
,
2000
, “
Closed Die Technologies for Hot Forging
,”
J. Mater. Process. Technol.
,
98
, pp.
165
170
.
8.
Kondo
,
K.
, and
Ohga
,
K.
,
1995
, “
Precision Cold Die Forging of a Ring Gear by Divided Flow Method
,”
Int. J. Mach. Tools Manuf.
,
35
(
8
), pp.
1105
1113
.
9.
Kim
,
S. Y.
, and
Im
,
Y. T.
,
2000
, “
Three-Dimensional Finite Element Simulations of Shape Rolling of Bars
,”
Int. J. Form. Proc.
,
3
(
3–4
), pp.
253
278
.
10.
Han
,
C. H.
, and
Yang
,
D. Y.
,
1988
, “
Further Investigation Into Extrusion of Trocoidal Gear Sections Considering Three-Dimensional Plastic Flow
,”
Int. J. Mech. Sci.
,
30
(
1
), pp.
13
30
.
11.
Yang
,
D. Y.
,
Kim
,
H. S.
,
Lee
,
C. M.
, and
Han
,
C. H.
,
1990
, “
Analysis of Three-Dimensional Extrusion of Arbitrarily Shaped Tubes
,”
Int. J. Mech. Sci.
,
32
(
2
), pp.
115
127
.
12.
Altan, T., Oh, S. I., and Gegel, H. L., 1983, Metal Forming: Fundamentals and Applications, American Society for Metals, Ohio.
13.
Kwak
,
D. Y.
,
Cheon
,
J. S.
, and
Im
,
Y. T.
,
2002
, “
Remeshing for Metal Forming Simulations—Part I: Two-Dimensional Quadrilateral Remeshing
,”
Int. J. Numer. Methods Eng.
,
53
, pp.
2463
2500
.
14.
Kwak
,
D. Y.
, and
Im
,
Y. T.
,
2002
, “
Remeshing for Metal Forming Simulations-Part II: Three-Dimensional Hexahedral Mesh Generation
,”
Int. J. Numer. Methods Eng.
,
53
, pp.
2501
2528
.
15.
Lee
,
G. A.
,
Kwak
,
D. Y.
,
Kim
,
S. Y.
, and
Im
,
Y. T.
,
2002
, “
Analysis and Design of Flat-Die Hot Extrusion Process 1. Three-Dimensional Finite Element Analysis
,”
Int. J. Mech. Sci.
,
44
, pp.
915
934
.
16.
Lee
,
G. A.
, and
Im
,
Y. T.
,
2002
, “
Analysis and Design of Flat-Die Hot Extrusion Process 2. Numerical Design of Bearing Lengths
,”
Int. J. Mech. Sci.
,
44
, pp.
935
946
.
17.
Lawry, M. H., 2000, I-DEAS Master Series™ 2.0 Student Guide, SDRC.
18.
International Cold Forging Group, 1996, Cold Forgeable Steels.
You do not currently have access to this content.