In resin transfer molding, the manufacture of the fiber preform controls many aspects of part quality. These include defects such as wrinkling and tearing, as well as spatial variations in fiber volume fraction and permeability. We develop a mathematical model and numerical method for analyzing preforming of random fiber mats. The model uses an ideal forming theory, which maps a fiber sheet to the mold surface by minimizing the integral of a formability function over the mold surface. The scalar formability function depends on the local deformation, and exhibits large values under conditions that promote either tearing or wrinkling of the mat. The model is implemented as a finite element simulation for arbitrarily shaped three-dimensional preforms. Results include the shape of the initial fiber sheet, and values of the formability function and the principal stretch ratios over the mold surface. This information is used to predict the presence of defects in the preform. Example calculations are shown for an axisymmetric hat shape and for a box with a flange. The calculation requires a modest amount of input data and, rather than predict the exact result of the forming operation, it shows the best result that is possible. Thus, it is a useful tool in the early stages of part and mold design.

1.
Lindsay
,
K. F.
,
1993
, “
Automation of Preform Fabrication Makes SRIM Viable for Volume Parts
,”
Mod. Plast.
,
70
, pp.
48
51
.
2.
Advani, S. G., Bruschke, M. V., and Parnas, R. S., 1994, “Resin Transfer Molding Flow Phenomena in Polymeric Composites,” Flow and Rheology in Polymer Composites Manufacturing, S. G. Advani, ed., Elsevier, Amsterdam, pp. 465–515.
3.
Parnas, R. S., 2000, Liquid Composite Molding, Hanser, Munich.
4.
Bakharev
,
A. S.
, and
Tucker
, III,
C. L.
,
1996
, “
Predicting the Effect of Preforming on RTM Mold Filling
,”
SPE Tech. Pap.
,
42
, pp.
797
801
.
5.
Fong
,
L.
, and
Lee
,
L. J.
,
1994
, “
Preforming Analysis of Thermoformable Fiber Mats—Preforming Effects on Mold Filling
,”
J. Reinf. Plast. Compos.
,
13
, pp.
637
663
.
6.
Tucker, III, C. L., 1997, “Forming of Advanced Composites,” Advanced Composites Manufacturing, T. G. Gutowski, ed., Wiley, New York.
7.
Van West
,
B. P.
,
Pipes
,
R. B.
, and
Keefe
,
M.
,
1990
, “
A Simulation of the Draping of Bidirectional Fabrics over Arbitrary Surfaces
,”
J. Text. Inst.
,
81
, pp.
448
460
.
8.
Van Der Weee¨n
,
F.
,
1991
, “
Algorithms for Draping Fabrics on Doubly-Curved Surfaces
,”
Int. J. Numer. Methods Eng.
,
31
, p.
415
415
.
9.
Rudd
,
C. D.
,
Rice
,
E. V.
,
Bulmer
,
L. J.
, and
Long
,
A. C.
,
1993
, “
Process Modelling and Design for Resin Transfer Molding
,”
Plast. Rubber Process. Applic.
,
20
, pp.
67
76
.
10.
Fong
,
L.
,
Xu
,
J.
, and
Lee
,
L. J.
,
1994
, “
Preforming Analysis of Thermoformable Glass Fiber Mats—Deformation Modes and Reinforcement Characterization
,”
Polym. Compos.
,
15
, pp.
134
146
.
11.
Long
,
A. C.
,
Rudd
,
C. D.
, and
Middleton
,
V.
,
1996
, “
Modeling the Deformation of Thermoformable Random Fiber Reinforcements During Preform Manufacture
,”
Polym. Compos.
,
17
, pp.
321
331
.
12.
Chung
,
K.
, and
Richmond
,
O.
,
1992
, “
Ideal Forming-I. Homogeneous Deformation with Minimum Plastic Work
,”
Int. J. Mech. Sci.
,
34
, pp.
575
591
.
13.
Chung
,
K.
, and
Richmond
,
O.
,
1992
, “
Ideal Forming-II. Sheet Forming with Optimum Deformation
,”
Int. J. Mech. Sci.
,
34
, pp.
617
633
.
14.
Chung
,
K.
, and
Richmond
,
O.
,
1994
, “
The Mechanics of Ideal Forming
,”
J. Appl. Phys.
,
61
, pp.
176
181
.
15.
Guo
,
Y. P.
,
Batoz
,
J. L.
,
Detraux
,
J. M.
, and
Duroux
,
P.
,
1990
, “
Finite Element Procedures for Strain Estimation of Sheet Metal Forming Parts
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
1385
1401
.
16.
Mouatassim, M. E., Thomas, B., Jameux, J.-P., and Pasquale, D. D., 1995, “An Industrial Finite Element Code for One-Step Simulation of Sheet Metal Forming,” Simulation of Materials, Processing: Theory, Methods, and Applications, S. F. Shen and P. Dawson, eds., Balkema, Rotterdam, pp. 761–766.
17.
Batoz, J. L., Guo, Y. P., and Mercier, F., 1995, “The Inverse Approach Including Bending Effects for the Analysis and Design of Sheet Metal Forming Parts,” Simulation of Materials Processing: Theory, Methods, and Applications, S. F. Shen and P. Dawson, eds., Balkema, Rotterdam, pp. 661–667.
18.
Dessenberger, R. B., 1997, “Modeling Preform Manufacture and Mold Filling for Resin Transfer Molding,” Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
19.
Aris, R., 1962, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover.
20.
Keeler
,
S. P.
,
1965
, “
Determination of Forming Limits in Automotive Stampings
,”
Sheet Metal Industries
,
42
, pp.
683
691
.
21.
Hecker
,
S. S.
,
1975
, “
Simple Technique for Determining Forming Limit Curves
,
Sheet Metal Industries
,
52
, pp.
671
676
.
22.
Dessenberg
,
R. B.
, and
Tucker
, III,
C. L.
,
1998
, “
Forming Limit Measurements for Random-Fiber Mats
,”
Polym. Compos.
,
19
, pp.
370
376
.
23.
P. E. Gill, Murray, W., and Wright, M., 1981, Practical Optimization, Academic Press, Inc.
24.
Teo
,
K. L.
,
Rehbock
,
V.
, and
Jennings
,
L. S.
,
1993
, “
A New Computational Algorithm for Functional Inequality Constrained Optimization Problems
,”
Automatica
,
29
, pp.
789
792
.
You do not currently have access to this content.