Ultrasonic bonding of thin foils has been recently introduced to rapid prototyping of complex-shaped and/or internally structured layered parts. This article provides the mechanical analysis of an elementary ultrasonic spot welding process of a metal foil on a previously deposited substrate. A 2-D, quasi-static/dynamic, elasto-plastic numerical model of the stress/strain field is developed by finite element analysis. Its frictional boundary conditions at the foil/substrate interface are described via a simpler plain stress, static analytical formulation, and identified experimentally by strain measurements on the substrate surface, adjacently to the ultrasonic probe. The calibrated computational simulation is validated in the laboratory and applied in studying the elastic stress concentrations, plastic deformation initiation and propagation patterns, the slippage at the interface surface and the dynamic effects of ultrasonic loading on the bonding process. This mechanical model is suitable for analysis of multi-joint ultrasonic rapid prototyping and its applications in fabrication of multi-material, functional internal structures with embedded components.

1.
Marcus, H. L, Harrison, S., and Crocker, J., 1996, “Solid Freeform Fabrication: An Overview,” Manufacturing Science and Engineering, ASME MED, Vol. 4, pp. 3–9.
2.
Kodama
,
K.
,
1981
, “
Display 3 Dimensional Information to a Physical Formed Model
,”
Trans. of Electronics and Communications Society
,
17
, No.
6
, pp.
237
241
.
3.
Feygin, M., and Hsieh, B., 1991, “Laminated Object Manufacturing: A Simpler Process,” Proc. of Solid Freeform Fabrication Symposium, Austin, TX, pp. 56–61.
4.
Crump, S., 1992, “The Extrusion Process of Fused Deposition Modeling,” Proc. of 3rd Intl. Conf. on Rapid Prototyping, Dayton, OH, pp. 21–27.
5.
Bourell
,
D. L.
,
Marcus
,
H. L.
,
Barlow
,
J. W.
, and
Beaman
,
J. J.
,
1992
, “
Selective Laser Sintering of Metals and Ceramics
,”
Int. J. Powder Metall.
,
28
, No.
4
, pp.
369
381
.
6.
Sachs
,
E.
,
Cima
,
M.
,
Williams
,
P.
,
Brancazio
,
D.
, and
Cornie
,
J.
,
1992
, “
Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model
,”
ASME J. Eng. Ind.
,
114
, pp.
481
488
.
7.
Orme
,
M.
,
Huang
,
C.
, and
Courter
,
J.
,
1996
, “
Precision Droplet-Based Manufacturing and Materials Synthesis: Fluid Dynamics and Thermal Control Issues
,”
Atomization Sprays
,
6
, pp.
305
329
.
8.
Amon
,
C. H.
,
Beuth
,
J. L.
,
Weiss
,
L. E.
,
Merz
,
R.
, and
Prinz
,
F. B.
,
1998
, “
Shape Deposition Manufacturing with Microcasting: Processing, Thermal and Mechanical Issues
,”
ASME J. Manuf. Sci. Eng.
,
120
, No.
3
, pp.
656
665
.
9.
Korizis
,
G.
, and
Doumanidis
,
C.
,
1999
, “
Scan Welding: Thermal Modeling and Control of Material Processing
,”
ASME J. Manuf. Sci. Eng.
,
121
, No.
3
, pp.
417
424
.
10.
Waterman
,
P. J.
,
1997
, “
Rapid Prototyping
,”
Design Engineering
, pp. 26–36.
11.
Johnson, N., Gao, Y., and Doumanidis, C., 2000, “Multi-Material Rapid Prototyping by Ultrasonic Welding,” Proc. 3rd World Congr. On Intel. Manuf. Proc. & Sys, CIRP, Cambridge MA, pp. 230–237.
12.
Harman
,
G. G.
, and
Albers
,
J.
,
1997
, “
Ultrasonic Welding Mechanism as Applied to Aluminum-Wire and Gold-Wire Bonding in Microelectronics
,”
IEEE Trans. Parts Hyb. Pack.
,
13
, No.
4
, pp.
406
412
.
13.
Aro
,
H.
,
Kallioniemi
,
H.
, and
Aho
,
A. J.
,
1980
, “
Ultrasonic Welding of Experimental Osteotomies
,”
Acta Orthop. Scand.
,
51
, No.
4
, pp.
703
703
.
14.
Devine
,
J.
,
1984
, “
Joining Metals with Ultrasonic Welding
,”
Mach. Des.
,
56
, No.
21
, pp.
91
95
.
15.
Kirzanowski, J. E., 1989, “A Transmission Electron Microscopy Study of Ultrasonic Wire Bonding,” Proc. 39th IEEE Electronic Components Conf, Houston, TX, pp. 450–455.
16.
Mozgovoi
,
I. V.
,
1984
, “
The Role Played by Shear Strains in Heat Generation in the Ultrasonic Welding of Polymers
,”
Welding Production
,
31
, No.
8
, pp.
11
14
.
17.
Golde, H. D., 1997, Ultrasonic Metal Welding, Verlag Moderne Industrie, Berlin, Germany.
18.
Jellison, J. L., Albright, C. E., Devine, J., Harmon, G., Knorovsky, G. A., Winchell II, V. H., and Papritan, J. C., 1991, “Ultrasonic Welding,” Welding Handbook, Ch. 25, 8th edition, O’Brien R. L. ed, American Welding Society, Miami, FL.
19.
Bathe, K. J., 1982, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ.
20.
Gao, Y., 1999, “Mechanical Analysis of Metal Ultrasonic Welding,” MS Thesis, Dept. of Mechanical Engineering, Tufts University, Medford, MA.
21.
McClintock, F. A., and Argon, A. S., 1966, Mechanical Behavior of Materials, Addison-Wesley, Reading, MA.
22.
Hoffman, O., and Sachs, G., 1953, Introduction to the Theory of Plasticity for Engineers, McGraw-Hill, New York, NY.
23.
Persson, B. N. J., 1998, Sliding Friction-Physical Principles and Applications, Springer-Verlag, Berlin-Heidelberg, Germany.
24.
Budynas, R. G., 1977, Advanced Strength and Applied Stress Analysis, McGraw-Hill, New York, NY.
25.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, UK.
26.
Moaveni, S., 1999, Finite Element Analysis: Theory and Application with ANSYS, Prentice-Hall, Englewood Cliffs, NJ.
27.
Meyers, M. A., Murr, L. E., and Staudhammer, K. P., 1992, Shock Wave and High Strain Rate Phenomena in Materials, M. Dekker, Reading, MA.
28.
Meyers, M. A., 1994, Dynamic Behavior of Materials, J. Wiley, New York, NY.
You do not currently have access to this content.