A genetic algorithm based approach is presented for process optimal design in forging. In this approach, the optimal design problem is formulated on the basis of the integrated thermo-mechanical finite element process model so as to cover diverse design variables and objective functions, and a genetic algorithm is adopted for conducting design iteration for optimization. The process model, the formulation for process optimal design, and the genetic algorithm are described in detail. The approach is applied to several selected process design problems in cold and hot forging.

1.
Lee
,
C. H.
, and
Kobayashi
,
S.
,
1973
, “
New Solutions to Rigid-plastic Deformation Problems Using a Matrix Method
,”
ASME J. Eng. Ind.
,
95
, pp.
865
873
.
2.
Park
,
J. J.
,
Rebelo
,
N.
, and
Kobayashi
,
S.
,
1983
, “
A New Approach to Preform Design in Metal Forming with the Finite Element Method
,”
Int. J. Mach. Tool Des. Res.
,
23
, pp.
71
79
.
3.
Hwang
,
S. M.
, and
Kobayashi
,
S.
,
1984
, “
Preform Design in Plane Strain Rolling by the Finite Element Method
,”
Int. J. Mach. Tool Des. Res.
,
24
, pp.
253
253
.
4.
Hwang
,
S. M.
, and
Kobayashi
,
S.
,
1986
, “
Preform Design in Disk Forging
,”
Int. J. Mach. Tool Des. Res.
,
26
, pp.
231
231
.
5.
Hwang
,
S. M.
, and
Kobayashi
,
S.
,
1987
, “
Preform Design in Shell Nosing at Elevated Temperatures
,”
Int. J. Mach. Tool Des. Res.
,
27
, pp.
1
1
.
6.
Kang
,
B. S.
,
Kim
,
N.
, and
Kobayashi
,
S.
,
1990
, “
Computer-Aided Preform Design in Forging of an Airfoil Section Blade
,”
Int. J. Mach. Tools Manuf.
,
30
, pp.
43
52
.
7.
Grandhi
,
R. V.
,
Kumar
,
A.
,
Chaudhary
,
A.
, and
Malas
,
J.
,
1993
, “
State-Space Representation of Optimal Control of Non-Linear Material Deformation Using the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
1967
1986
.
8.
Zhao
,
G.
,
Wright
,
E.
, and
Grandhi
,
R. V.
,
1995
, “
Forging Preform Design with Shape Complexity Control in Simulating Backward Deformation
,”
Int. J. Mach. Tools Manuf.
,
35
, pp.
1225
1239
.
9.
Han
,
C. S.
,
Grandhi
,
R. V.
, and
Srinivasan
,
R.
,
1993
, “
Optimum Design of Forging Die Shapes Using Nonlinear Finite Element Analysis
,”
AIAA J.
,
31
, pp.
774
781
.
10.
Berg, J. M., and Malas, J., 1995, “Open-Loop Control of a Hot Forming Process,” Proc. 5th Int. Conf. on Numer. Methods in Ind. Forming Processes, Ithaca, New York, pp. 539–544.
11.
Kusak, J., and Thompson, E. G., 1989, “Optimization Techniques for Extrusion Die Shape Design,” Proc. 3rd Int. Conf. on Numer. Methods in Ind. Forming Processes, Fort Collins, Colorado, pp. 569–574.
12.
Barinarayanan, S., and Zabaras, N., 1995, “Preform Design in Metal Forming,” Proc. 5th Int. Conf. on Numer. Methods in Ind. Forming Processes, Ithaca, New York, pp. 533–538.
13.
Forment
,
L.
, and
Chenot
,
J. L.
,
1996
, “
Optimal Design for Non-Steady State Metal Forming Processes—I. Shape Optimization Method
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
33
50
.
14.
Forment
,
L.
,
Balan
,
T.
, and
Chenot
,
J. L.
,
1996
, “
Optimal Design for Non-Steady State Metal Forming Processes—II. Application of Shape Optimization in Forging
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
51
65
.
15.
Chung
,
S. H.
, and
Hwang
,
S. M.
,
1998
, “
Optimal Process Design in Non-isothermal, Non-steady Forming by the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
42
, pp.
1343
1390
.
16.
Joun
,
M. S.
, and
Hwang
,
S. M.
,
1993
, “
Optimal Process Design in Steady-State Metal Forming by Finite Element Method-I. Theoretical Considerations
,”
Int. J. Mach. Tools Manuf.
,
33
, pp.
51
61
.
17.
Joun
,
M. S.
, and
Hwang
,
S. M.
,
1993
, “
Optimal Process Design in Steady-State Metal Forming by Finite Element Method-II. Application to Die Profile Design in Extrusion
,”
Int. J. Mach. Tools Manuf.
,
33
, pp.
63
70
.
18.
Michaleris
,
P. A.
,
Tortorelli
,
D. A.
, and
Vidal
,
C. A.
,
1994
, “
Tangent Operators and Design Sensitivity Formulations for Transient Non-linear Coupled Problems with Applications to Elastoplasticity
,”
Int. J. Num. Methods Eng.
,
37
, pp.
2471
2499
.
19.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, Inc.
20.
Roy
,
S.
,
Ghoshi
,
S.
, and
Shivpuri
,
R.
,
1997
, “
A New Approach to Optimal Design of Multi-Stage Metal Forming Processes with Micro Genetic Algorithms
,”
Int. J. Mach. Tools Manuf.
,
37
, pp.
29
44
.
21.
Rebelo
,
N.
, and
Kobayashi
,
S.
,
1980
, “
A Coupled Analysis of Viscoplastic Deformation and Heat Transfer-II
,”
Int. J. Mech. Sci.
,
22
, pp.
706
718
.
22.
Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.
23.
Hollstein, R. B., 1971, “Artificial Genetic Adaptation in Computer Control System,” Doctorial Dissertation, University of Michigan.
24.
Chung
,
J. S.
, and
Hwang
,
S. M.
,
1998
, “
Application of a Genetic Algorithm to Process Optimal Design in Non-isothermal Metal Forming
,”
J. Mater. Process. Technol.
,
80
, pp.
136
143
.
25.
Krishnakumar
,
K.
,
1989
, “
Microgenetic Algorithms for Stationary and Nonstationary Functional Optimization
,”
SPIE Proceedings
,
1196
, pp.
289
296
.
26.
Chung
,
J. S.
, and
Hwang
,
S. M.
,
1997
, “
Application of Genetic Algorithm to Die Shape Optimal Design in Extrusion
,”
J. Mater. Process. Technol.
,
72
, No.
1
, pp.
69
77
.
27.
Joun, M. S., Ryoo, S. R., and Hwang, S. M., 1995, “Application of a New Guide Grid Mesh Generation Technique to Automatic Finite Element Simulation of Plastic Deformation in Forging,” Proc. of the Fourth Inter. Conf. on Computational Plasticity, Barcelona, pp. 419–429.
28.
Cheng
,
H.
,
Grandi
,
R. V.
, and
Malas
,
J. C.
,
1994
, “
Design of Optimal Process Parameters for Non-isothermal Forging
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
155
177
.
You do not currently have access to this content.