A microstructure-level model for simulation of machining of cast irons using the finite element method is presented. The model explicitly combines ferritic and pearlitic grains with graphite nodules to produce the ductile iron structure. The behaviors of pearlite, ferrite, and graphite are captured individually using an internal state variable model for the material model. The behavior of each phase is dependent on strain, strain rate, temperature, and amount of damage. Extensive experimentation was conducted to characterize material strain rate and temperature dependency of both ferrite and pearlite. The model is applied to orthogonal machining of ductile iron. The simulation results demonstrate the feasibility of successfully capturing the influence of microstructure on machinability and part performance. The stress, strain, temperature, and damage results obtained from the model are found to correlate well with experimental results found in the literature. Furthermore, the model is capable of handling various microstructures in other heterogeneous materials such as steels.

1.
Merchant
,
M. E.
,
1945
, “
Mechanics of Metal Cutting Process, I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
, pp.
267
275
.
2.
Lee
,
E. H.
, and
Shafer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
73
, pp.
405
413
.
3.
Fu
,
H. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1984
, “
A Mechanistic Model for Prediction of the Force System in Face Milling Operations
,”
ASME J. Eng. Ind.
,
106
, pp.
81
88
.
4.
Endres
,
W. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1995
, “
A Dual-Mechanism Approach for Prediction of Machining Forces, Part 1: Model Development
,”
ASME J. Eng. Ind.
,
117
, pp.
526
533
.
5.
Belak, J., and Stoawers, I., 1990, “A Molecular Dynamics Model of the Orthogonal Cutting Process,” Proceedings of ASPE Annual Conference, Rochester, NY, p. 76.
6.
Ikawa
,
N.
,
Shimada
,
S.
,
Tanaka
,
H.
, and
Ohmori
,
G.
,
1991
, “
An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning
,”
CIRP Ann.
,
40
, pp.
117
123
.
7.
Strenkowski
,
J. S.
, and
Carol
,
J. T.
,
1985
, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
109
, pp.
349
353
.
8.
Iwata
,
K.
,
Osakada
,
K.
, and
Terasaka
,
Y.
,
1984
, “
Process Modeling of Orthogonal Cutting by Rigid-Plastic Finite Element Method
,”
ASME J. Eng. Mater. Technol.
,
106
, pp.
132
138
.
9.
Iron Casting Handbook, 1981, C. F. Walton, and T. J. Opar, eds., p. 323, Iron Casting Society.
10.
Metals Handbook, 1998, Desk Edition, Second Edition, ASM.
11.
Voigt
,
R. C.
,
Marwanga
,
R. O.
, and
Cohen
,
P. H.
,
1999
, “
Machinability of Gray Iron–Mechanics of Chip Formation
,”
International Journal of Cast Metal Research
,
11
, p.
567
572
.
12.
ANSYS Modeling and Meshing Guide, 1998, SAS IP, Inc. 3rd Edition.
13.
Underwood
,
E. E.
, and
Berry
,
J. T.
,
1981
, “
Quantitative Measurements of Cast Iron Microstructures
,”
AFS Transactions
,
81
, pp.
755
766
.
14.
Lubliner, J., 1990, Plasticity Theory, Macmillan.
15.
Bammann, D. J., Chiesa, M. L., and Johnson, G. C., 1996, “Modeling Large Deformation and Failure in Manufacturing Processes,” Theoretical and Applied Mechanics 1996: Proceedings of the XIXth International Congress of Theoretical and Applied Mechanics, Kyoto, Japan, Tatsumi, Wanabe, Kambe, eds., pp. 359–376.
16.
Bammann
,
D. J.
, and
Johnson
,
G. C.
,
1987
, “
On the Kinematics of Finite-Deformation Plasticity
,”
Acta Mech.
,
70
, pp.
1
13
.
17.
Dieter, G. E., 1986, Mechanical Metallurgy, 3rd Edition, McGraw-Hill, p. 72.
18.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture during Power-Law Creep under Multiaxial Stresses
,”
Metal Science
,
14
, pp.
395
402
.
19.
Farren
,
W. S.
, and
Taylor
,
G. I.
,
1925
, “
The Heat Developed during Plastic Extrusion of Metals
,”
Proc. R. Soc. London, Ser. A
,
107
, pp.
422
451
.
20.
Follansbee, P. S., 1985, “The Hopkinson Bar,” Metals Handbook, 9th Edition, pp. 198–203.
21.
Strenkowski, J. S., and Carol, J. T., 1986, “An Orthogonal Metal Cutting Model Based on Eulerian Finite Element Method,” Manufacturing Processes, Machines and Systems, Proceedings of the 13th NSF Conference on Production Research and Technology, pp. 261–264.
22.
Strenkowski
,
J. S.
, and
Moon
,
K-J.
,
1990
, “
A Finite Element Prediction of Chip Geometry and Tool/Workpiece Temperature Distributions in Orthogonal Cutting
,”
ASME J. Eng. Ind.
,
112
, pp.
313
318
.
23.
Komvopoulos
,
K.
, and
Erpenbeck
,
S. A.
,
1991
, “
Finite Element Modeling of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
113
, pp.
253
267
.
24.
Hibbitt, Karlson, Sorensen, Inc., 1998, ABAQUS User’s and Theory Manuals, Version 5.8.
25.
Krieg
,
R. D.
, and
Krieg
,
D. B.
,
1977
, “
Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model
,”
ASME J. Pressure Vessel Technol.
,
99
, pp.
510
515
.
26.
Shaw, M. C., 1991, Metal Cutting Principles, Oxford University Press, pp. 42–43.
27.
Subramani
,
G.
,
Whitmore
,
M. C.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
1991
, “
Temperature Distribution in a Hollow Cylindrical Workpiece During Machining: Theoretical Model and Experimental Results
,”
ASME J. Eng. Ind.
,
113
, pp.
373
380
.
28.
Li
,
H.
,
Pugh
,
D.
, and
Green
,
D.
,
1964
–1965, “
The Effects of Hydrostatic Pressure on the Plastic Flow and Fracture of Metals
,”
Proc. Inst. Mech. Eng.
,
179, Part 1
, No.
12
, pp.
415
437
.
You do not currently have access to this content.