Abstract

Experiments and numerical simulations are conducted to investigate the flow and heat transfer characteristics of the guiding pin-fin array in a rotating wedge-shaped channel that represents the internal cooling passage features for turbine blade trailing edges. The rotating experiments cover Reynolds number ranges from 10,000 to 80,000 and rotation number ranges from 0 to 0.46. The results demonstrate that, with a proper arrangement, the guiding pin-fin array can significantly reduce the endwall temperature and pressure loss in the wedge-shaped channel. However, it was observed that at the midspan of the guiding pin-fin array channel, heat transfer was relatively low, forming a high-temperature region. To enhance channel heat transfer uniformity, 2 mm clearances were introduced to the guiding pin-fins at the channel root region, 2 mm from the trailing endwall. The numerical results show that this structural modification effectively improved the endwall heat transfer intensity at the midspan of the wedge-shaped channel, particularly on the leading surface. In cases with Reynolds number (Re) equal to 50,000 and rotation number (Ro) equal to 0.075, the leading and trailing endwall Nusselt numbers of the detached guiding pin-fin array were 6.5% and 4.8% higher than those of the guiding pin-fin array. The secondary flow and transverse vortex induced by the detached pin-fins reduced the main stream velocity, thereby inhibiting the Coriolis force effect and diminishing the endwall heat transfer discrepancy. Further comparisons at Re = 50,000 and Ro = 0.075 and 0.15 revealed that the leading and trailing endwall heat transfer discrepancy coefficient (δ) of the detached guiding pin-fin array was 61.8% and 42.2% lower than that of the circular pin-fin array, respectively. In high-temperature cases with solid domain, which are closer to the real turbine blade operating condition, the detached guiding pin-fin array also can provide superior cooling performance. In the wedge-shaped channel with detached guiding pin-fin, the maximum and average temperature values of the solid domain are about 10% lower than that of the channel with circular pin-fin, at both rotating and stationary conditions.

References

1.
Jian
,
Z.
,
Li
,
W.
,
Dong
,
W.
,
Guang
,
X.
,
Yuzhang
,
L.
,
Jian
,
S.
, and
Langhong
,
L.
,
2019
, “
Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys
,”
Acta Metall. Sin.
,
55
(
9
), pp.
1077
1094
.10.11900/0412.1961.2019.00122
2.
Du
,
W.
,
Luo
,
L.
,
Jiao
,
Y.
,
Wang
,
S.
,
Li
,
X.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer in the Trailing Region of Gas Turbines—A State-of-the-Art Review
,”
Appl. Therm. Eng.
,
199
, p.
117614
.10.1016/j.applthermaleng.2021.117614
3.
Cunha
,
F. J.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-Edge Cooling for Gas Turbines
,”
J. Propul. Power
,
22
(
2
), pp.
286
300
.10.2514/1.20898
4.
Wright
,
L. M.
,
Liu
,
Y.-H.
,
Han
,
J.-C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
7
), p.
071701
.10.1115/1.2907437
5.
Li
,
Y.
,
Deng
,
H.
,
Tao
,
Z.
,
Xu
,
G.
, and
Chen
,
Y.
,
2017
, “
Heat Transfer Characteristics in a Rotating Trailing Edge Internal Cooling Channel With Two Coolant Inlets
,”
Int. J. Heat Mass Transfer
,
105
, pp.
220
229
.10.1016/j.ijheatmasstransfer.2016.08.114
6.
Deng
,
H.
,
Wang
,
J.
,
Bai
,
L.
, and
Zhu
,
J.
,
2021
, “
Heat Transfer Characteristics in a Rotating Wedge-Shaped Ribbed Trailing Edge With Impingement Jet
,”
Exp. Heat Transfer
,
34
(
1
), pp.
18
35
.10.1080/08916152.2020.1713256
7.
Yeranee
,
K.
,
Rao
,
Y.
,
Xu
,
C.
,
Zhang
,
Y.
, and
Su
,
X.
,
2024
, “
Turbulent Flow Heat Transfer and Thermal Stress Improvement of Gas Turbine Blade Trailing Edge Cooling With Diamond-Type TPMS Structure
,”
Aerospace
,
11
(
1
), p.
37
.10.3390/aerospace11010037
8.
Yeranee
,
K.
,
Xu
,
C.
,
Rao
,
Y.
,
Chen
,
J.
, and
Zhang
,
Y.
,
2024
, “
Rotating Flow and Heat Transfer Characteristics of a Novel Cooling Channel for Gas Turbine Blade Trailing Edge With Diamond-Type TPMS Structures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
5
), p.
051002
.10.1115/1.4065157
9.
Li
,
Y.
,
Shen
,
B.
,
Yan
,
H.
,
Boetcher
,
S. K. S.
, and
Xie
,
G.
,
2020
, “
Heat Transfer Enhancement of Rotating Wedge-Shaped Channels With Pin Fins and Kagome Lattices
,”
Numer. Heat Transfer, Part A: Appl.
,
77
(
12
), pp.
1014
1033
.10.1080/10407782.2020.1746613
10.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.10.2514/2.1964
11.
Bianchini
,
C.
,
Facchini
,
B.
,
Simonetti
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2012
, “
Numerical and Experimental Investigation of Turning Flow Effects on Innovative Pin Fin Arrangements for Trailing Edge Cooling Configurations
,”
ASME J. Turbomach.
,
134
(
2
), p.
021005
.10.1115/1.4003230
12.
Asar, E., Agricola, L., Hossain, M. A., and Bons, J. P.,
2018
, “
An Innovative Pin Fin Design for Turbine Trailing Edge Cooling
,”
AIAA
Paper No. 2018-4524.10.2514/6.2018-4524
13.
Otto
,
M.
,
Kapat
,
J.
,
Ricklick
,
M.
, and
Mhetras
,
S.
,
2022
, “
Heat Transfer in a Rib Turbulated Pin Fin Array for Trailing Edge Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041012
.10.1115/1.4051766
14.
Yang
,
K.
,
Liu
,
J.
, and
Wang
,
J.
,
2024
, “
Heat Transfer Enhancement by Inserting a Radiation-Turbulence Component in a Wedge Channel
,”
Int. J. Heat Mass Transfer
,
219
, p.
124907
.10.1016/j.ijheatmasstransfer.2023.124907
15.
Luo
,
L.
,
Yan
,
H.
,
Yang
,
S.
,
Du
,
W.
,
Wang
,
S.
,
Sunden
,
B.
, and
Zhang
,
X.
,
2018
, “
Convergence Angle and Dimple Shape Effects on the Heat Transfer Characteristics in a Rotating Dimple-Pin Fin Wedge Duct
,”
Numer. Heat Transfer, Part A: Appl.
,
74
(
10
), pp.
1611
1635
.10.1080/10407782.2018.1543920
16.
Sahin
,
I.
,
Chen
,
I. L.
,
Wright
,
L. M.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
,
2021
, “
Heat Transfer in Rotating, Trailing-Edge, Converging Channels With Smooth Walls and Pin-Fins
,”
ASME J. Turbomach.
,
143
(
7
), p.
071007
.10.1115/1.4050355
17.
Li
,
H.
,
Deng
,
H.
,
Bai
,
L.
,
Zhu
,
J.
,
Tian
,
S.
, and
Qiu
,
L.
,
2020
, “
Heat Transfer in a Rotating Two-Inlet Wedge-Shaped Channel With Pin-Fins
,”
Int. J. Heat Mass Transfer
,
163
, p.
120380
.10.1016/j.ijheatmasstransfer.2020.120380
18.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1996
, “
Heat Transfer on the Base Surface of Three-Dimensional Protruding Elements
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2925
2935
.10.1016/0017-9310(95)00381-9
19.
Jin
,
W.
,
Wu
,
J.
,
Jia
,
N.
,
Lei
,
J.
,
Ji
,
W.
, and
Xie
,
G.
,
2021
, “
Effect of Shape and Distribution of Pin-Fins on the Flow and Heat Transfer Characteristics in the Rectangular Cooling Channel
,”
Int. J. Therm. Sci.
,
161
, p.
106758
.10.1016/j.ijthermalsci.2020.106758
20.
Liang
,
C.
,
Rao
,
Y.
,
Luo
,
J.
, and
Luo
,
X.
,
2021
, “
Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fins for Turbine Blade Trailing Edge Cooling
,”
Int. J. Heat Mass Transfer
,
178
, p.
121590
.10.1016/j.ijheatmasstransfer.2021.121590
21.
Liang
,
C.
,
Rao
,
Y.
,
Chen
,
J.
, and
Zhang
,
P.
,
2022
, “
Experimental and Numerical Study of the Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fin Arrays Under Rotating Conditions
,”
ASME J. Turbomach.
,
144
(
7
), p.
071007
.10.1115/1.4053488
22.
Moores
,
K. A.
, and
Joshi
,
Y. K.
,
2003
, “
Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
6
), pp.
999
1006
.10.1115/1.1621897
23.
Moores
,
K. A.
,
Kim
,
J.
, and
Joshi
,
Y. K.
,
2009
, “
Heat Transfer and Fluid Flow in Shrouded Pin Fin Arrays With and Without Tip Clearance
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5978
5989
.10.1016/j.ijheatmasstransfer.2009.08.005
24.
Chi
,
X.
,
Shih
,
T. I.-P.
,
Bryden
,
K. M.
,
Siw
,
S.
,
Chyu
,
M. K.
,
Ames
,
R.
, and
Dennis
,
R. A.
,
2011
, “
Effects of Pin-Fin Height on Flow and Heat Transfer in a Rectangular Duct
,”
ASME
Paper No. GT2011-46014.10.1115/GT2011-46014
25.
Jadhav
,
R. S.
, and
Balaji
,
C.
,
2016
, “
Fluid Flow and Heat Transfer Characteristics of a Vertical Channel With Detached Pin-Fin Arrays Arranged in Staggered Manner on Two Opposite Endwalls
,”
Int. J. Therm. Sci.
,
105
, pp.
57
74
.10.1016/j.ijthermalsci.2016.02.017
26.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Liu
,
J.
, and
Sunden
,
B.
,
2019
, “
Heat Transfer and Flow Structure in a Rotating Duct With Detached Pin Fins
,”
Numer. Heat Transfer, Part A: Appl.
,
75
(
4
), pp.
217
241
.10.1080/10407782.2019.1580957
27.
Sahin
,
I.
,
Chen
,
I. L.
,
Wright
,
L. M.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
,
2021
, “
Heat Transfer in Rotating, Trailing Edge, Converging Channels With Partial Length Pin-Fins
,”
ASME J. Turbomach.
,
143
(
6
), p.
061009
.10.1115/1.4050241
28.
Liang
,
C.
, and
Rao
,
Y.
,
2021
, “
Numerical Study of Turbulent Flow and Heat Transfer in Channels With Detached Pin Fin Arrays Under Stationary and Rotating Conditions
,”
Int. J. Therm. Sci.
,
160
, p.
106659
.10.1016/j.ijthermalsci.2020.106659
29.
Siw
,
S. C.
,
Chyu
,
M. K.
,
Shih
,
T. I. P.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
8
), p.
081902
.10.1115/1.4006166
30.
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Pin Detached Space on Heat Transfer in a Rib Roughened Channel
,”
ASME J. Turbomach.
,
135
(
2
), p.
021029
.10.1115/1.4006567
31.
Shevchuk
,
I. V.
, 2015,
Modelling of Convective Heat and Mass Transfer in Rotating Flows
, Springer International Publishing, Basel, Switzerland.
You do not currently have access to this content.