Abstract

This study numerically investigates low aspect ratio incremental impingement configurations to evaluate the effect of jet hole size on both local and global heat transfer. The large eddy simulation (LES) model is developed based on the geometry and boundary conditions detailed by Busche et al. (2013, “Heat Transfer and Pressure Drop Measurements in High Solidity Pin Fin Cooling Arrays With Incremental Replenishment,” ASME J. Turbomach., 135(4), p. 041011). The model’s accuracy is validated by comparing its predictions with experimental results from the same study. The configuration consists of eight staggered rows of pin-fins with streamwise (X/D) and spanwise (S/D) spacings of 1.074 and 1.625, respectively, and a channel aspect ratio of 0.5D, where the pin-fin diameter (D) is 2.54 cm. Jets are directed into cut-out sections of the pin-fins to shield the jet stagnation region from crossflow. Coolant enters the pin-fin channels via five rows of jets, with four jet hole diameters: petite (P, 0.25D), small (S, 0.29D), medium (M, 0.36D), and large (L, 0.41D). The global Reynolds number, based on pin-fin diameter and maximum bulk velocity, is 7500. Twenty configurations are designed by varying the diameter of each jet row while keeping the others constant. The near-jet vortical structures are highlighted using isosurfaces of the Q-criterion. Jet mass velocities and mass flow rate distributions are compared across configurations. Row-by-row cooling parameters, as well as global Nusselt numbers and friction factors, are calculated to assess the relative advantages of each configuration.

References

1.
Busche
,
M. L.
,
Moualeu
,
L. P.
,
Chowdhury
,
N.
,
Tang
,
C.
, and
Ames
,
F. E.
,
2013
, “
Heat Transfer and Pressure Drop Measurements in High Solidity Pin Fin Cooling Arrays With Incremental Replenishment
,”
ASME J. Turbomach.
,
135
(
4
), p.
041011
.10.1115/1.4007581
2.
Sheikhmohamed
,
A. A.
,
Soma
,
L. W.
,
Ames
,
F. E.
, and
Acharya
,
S.
,
2017
, “
Heat Transfer and Pressure Drop Measurements in a High Solidity Pin Fin Array With Variable Hole Size Incremental Impingement
,”
ASME
Paper No. GT2017-65046.10.1115/GT2017-65046
3.
Singh
,
S.
,
Acharya
,
S.
, and
Ames
,
F.
,
2017
, “
Numerical Investigation of Local Cooling Enhancement Using Pin-Finned Channel With Incremental Impingement
,”
ASME
Paper No. GT2017-65083.10.1115/GT2017-65083
4.
Metzger
,
D. E.
, and
Korstad
,
R. J.
,
1972
, “
Effects of Crossflow on Impingement Heat Transfer
,”
ASME J. Eng. Power
,
94
(
1
), pp.
35
41
.10.1115/1.3445616
5.
Galant
,
S.
, and
Martinez
,
G.
,
1982
, “
Cross Flow Influence Upon Impingement Convective Heat Transfer in Circular Arrays of Jets: A General Correlation
,”
Proceedings of the Seventh International Heat Transfer Conference,
Munchen, Germany, Sept. 6–10, pp.
343
347
.https://www.researchgate.net/publication/253366295_Cross_flow_influence_upon_impingement_convective_heat_transfer_in_circular_arrays_of_jets_-_A_general_correlation
6.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
7.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Truman
,
C. R.
,
1981
, “
Jet Array Impingement With Crossflow—Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,” NASA, Washington, DC, NASA Contractor Report No.
3373
.https://ntrs.nasa.gov/api/citations/19810006721/downloads/19810006721.pdf
8.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effects If Spent Air
,”
J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
9.
Hollworth
,
B. R.
, and
Cole
,
G. H.
,
1987
, “
Heat Transfer to Arrays of Impinging Jets in a Crossflow
,”
ASME J. Turbomach.
,
109
(
4
), pp.
564
571
.10.1115/1.3262149
10.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
11.
Terzis
,
A.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Cochet
,
M.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-In Turbine Airfoils
,”
ASME J. Turbomach.
,
136
(
9
), p.
091011
.10.1115/1.4027679
12.
Gao
,
L.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2003
, “
Impingement Heat Transfer Under Linearly Stretched Arrays of Holes
,”
ASME
Paper No. GT2003-38178.10.1115/GT2003-38178
13.
Uysal
,
U.
,
Li
,
P.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
,
2006
, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
,
128
(
1
), pp.
158
165
.10.1115/1.2101859
14.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2015
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p.
021004
.10.1115/1.4028294
15.
Siw
,
S. C.
,
Miller
,
N.
,
Alvin
,
M.
, and
Chyu
,
M.
,
2017
, “
Heat Transfer Performance of Internal Cooling Channel With Single-Row Jet Impingement Array by Varying Flow Rates
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011015
.10.1115/1.4034686
16.
Ji
,
Y.
,
Singh
,
P.
,
Ekkad
,
S. V.
, and
Zang
,
S.
,
2017
, “
Effect of Crossflow Regulation by Varying Jet Diameters in Streamwise Direction on Jet Impingement Heat Transfer Under Maximum Crossflow Condition
,”
Numer. Heat Transfer, Part A: Appl.
,
72
(
8
), pp.
579
599
.10.1080/10407782.2017.1394136
17.
Madhavan
,
S.
,
Ramakrishnan
,
K. R.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Jet Impingement Heat Transfer Enhancement by U-Shaped Crossflow Diverters
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041005
.10.1115/1.4045514
18.
Singh
,
S.
,
Acharya
,
S.
, and
Ames
,
F.
,
2017
, “
Cooling Performance Comparison of a Low Aspect Ratio Incremental Impingement Pin-Fin Channel Configurations
,”
ASME
Paper No. HT2017-5072.10.1115/HT2017-5072
19.
Tafti
,
D. K.
,
2005
, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
92
104
.10.1016/j.ijheatfluidflow.2004.07.002
20.
Tyagi
,
M.
,
2003
, “
Large Eddy Simulations of Complex Turbulent Flows
,”
Ph.D. thesis
,
Department of Mechanical Engineering, Louisiana State University
,
Baton Rouge, LA
.https://www.proquest.com/openview/d95404fcbb86a86970c87a9571e87928/1?cbl=18750&diss=y&pq-origsite=gscholar
21.
Singh
,
S.
,
Acharya
,
S.
, and
Ames
,
F.
,
2016
, “
Effect of Inlet Flow Condition on Heat Transfer in Pin-Fin Cooling Configurations
,”
AIAA
Paper No. 2016-0908.10.2514/6.2016-0908
22.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2009
, “
Influence of Streamwise Pitch on the Local Heat Transfer Characteristics for In-Line Arrays of Circular Jets With Crossflow of Spent Air in One Direction
,”
Heat Mass Transfer
,
45
(
9
), pp.
1167
1184
.10.1007/s00231-009-0491-z
23.
Miao
,
J. M.
,
Wu
,
C. Y.
, and
Chen
,
P. H.
,
2009
, “
Numerical Investigation of Confined Multiple-Jet Impingement Cooling Over a Flat Plate at Different Crossflow Orientations
,”
Numer. Heat Transfer, Part A
,
55
(
11
), pp.
1019
1050
.10.1080/10407780903014335
24.
Jaswal
,
I.
, and
Ames
,
F. E.
,
2009
, “
Heat Transfer and Pressure Drop Measurements in Constant and Converging Section Pin and Diamond Pedestal Arrays
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
1
), p.
011006
.10.1115/1.3159498
You do not currently have access to this content.