Abstract

This work proposes a model based on the step-wise method to identify conductivity and heat capacity. Contrary to conventional models, this model considers the thermal properties of the heating element, the thermal contact resistance at the measurement point, and the lateral convection losses around the device. The mathematical model is solved using a numerical approach based on the finite element method (FEM) to obtain the temperature distribution over the entire measurement device. This temperature field is generated by the passage of electric current through a flat electrical resistor made of thin metal foil (Kapton). Heat is produced as a progressive function. A thermocouple placed at a distance from the heat source measures the temperature response. A sensitivity analysis showed that the heating element parameters did not affect the long-term estimates. Additionally, this sensitivity analysis showed the possibility of estimating conductivity, heat capacity, contact resistance, and convection coefficient. Experimental data obtained with this model on two materials are compared with results obtained using conventional methods (HotDisk TPS2200, fluxmeter). There is a 2.5% difference between the thermal conductivities obtained with our model and the HotDisk and fluxmeter methods. The maximum relative error in thermal capacity is 6%.

References

1.
Zarr
,
R. R.
,
Guthrie
,
W. F.
,
Hay
,
B.
, and
Koenen
,
A.
,
2017
, “
Collaborative Guarded-Hot-Plate Tests Between the Laboratoire National De Métrologie Et D'essais and the National Institute of Standards and Technology
,”
Metrologia
,
54
(
1
), pp.
113
128
.10.1088/1681-7575/aa4e55
2.
Sánchez-Calderón
,
I.
,
Merillas
,
B.
,
Bernardo
,
V.
, and
Rodríguez-Pérez
,
M. Á.
,
2022
, “
Methodology for Measuring the Thermal Conductivity of Insulating Samples With Small Dimensions by Heat Flow Meter Technique
,”
J. Therm. Anal. Calorim.
,
147
(
22
), pp.
12523
12533
.10.1007/s10973-022-11457-7
3.
Salim
,
S.
,
2022
, “
Thermal Conductivity Measurements Using the Transient Hot-Wire Method: A Review
,”
Meas. Sci. Technol.
,
33
(
12
), p.
125022
.10.1088/1361-6501/ac90df
4.
Štofanik
,
V.
,
Markovi
,
M.
,
Boháč
,
V.
,
Dieška
,
P.
, and
Kubičár
,
Ľ.
,
2007
, “
RT-Lab - the Equipment for Measuring Thermophysical Properties by Transient Methods
,”
Meas. Sci. Rev.
,
7
(
1
), pp.
15
18
.https://www.academia.edu/58882299/RT_Lab_the_Equipment_for_Measuring_Thermophysical_Properties_by_Transient_Methods
5.
Salazar
,
A.
,
Mendioroz
,
A.
,
Apiñaniz
,
E.
,
Pradere
,
C.
,
Noël
,
F.
, and
Batsale
,
J.-C.
,
2014
, “
Extending the Flash Method to Measure the Thermal Diffusivity of Semitransparent Solids
,”
Meas. Sci. Technol.
,
25
(
3
), p.
035604
.10.1088/0957-0233/25/3/035604
6.
Rodrigo
,
O.
, and
Bertrand
,
G.
,
2022
, “
Radial Thermal Conductivity of a PAN Type Carbon Fiber Using the 3 Omega Method
,”
Int. J. Therm. Sci.
,
172
, p.
107321
.10.1016/j.ijthermalsci.2021.107321
7.
Zheng
,
Q.
,
Kaur
,
S.
,
Dames
,
C.
, and
Prasher
,
R. S.
,
2020
, “
Analysis and Improvement of the Hot Disk Transient Plane Source Method for Low Thermal Conductivity Materials
,”
Int. J. Heat Mass Transfer
,
151
, p.
119331
.10.1016/j.ijheatmasstransfer.2020.119331
8.
Gustafsson
,
S. E.
,
1991
, “
Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials
,”
Rev. Sci. Instrum.
,
62
(
3
), pp.
797
804
.10.1063/1.1142087
9.
Ma
,
A.
,
Cai
,
C.
,
Yang
,
J.
, and
Zhou
,
T.
,
2021
, “
Measuring Thermophysical Properties of Building Insulation Materials Using Transient Plane Heat Source Method
,”
Energy Build.
,
240
, p.
110891
.10.1016/j.enbuild.2021.110891
10.
Abidi
,
S.
,
Nait-Ali
,
B.
,
Joliff
,
Y.
, and
Favotto
,
C.
,
2015
, “
Impact of Perlite, Vermiculite and Cement on the Thermal Conductivity of a Plaster Composite Material: Experimental and Numerical Approaches
,”
Composites, Part B
,
68
, pp.
392
400
.10.1016/j.compositesb.2014.07.030
11.
Bouguerra
,
A.
,
Aït-Mokhtar
,
A.
,
Amiri
,
O.
, and
Diop
,
M. B
,
2001
, “
Measurement of Thermal Conductivity, Thermal Diffusivity and Heat Capacity of Highly Porous Building Materials Using Transient Plane Source Technique
,”
Int. Commun. Heat Mass Transfer
,
28
(
8
), pp.
1065
1078
.10.1016/S0735-1933(01)00310-4
12.
Li
,
Y.
,
Shi
,
C.
,
Liu
,
J.
,
Liu
,
E.
,
Shao
,
J.
,
Chen
,
Z.
,
Dorantes-Gonzalez
,
D. J.
, and
Hu
,
X.
,
2014
, “
Improving the Accuracy of the Transient Plane Source Method by Correcting Probe Heat Capacity and Resistance Influences
,”
Meas. Sci. Technol.
,
25
(
1
), p.
015006
.10.1088/0957-0233/25/1/015006
13.
Elkholy
,
A.
,
Sadek
,
H.
, and
Kempers
,
R.
,
2019
, “
An Improved Transient Plane Source Technique and Methodology for Measuring the Thermal Properties of Anisotropic Materials
,”
Int. J. Therm. Sci.
,
135
, pp.
362
374
.10.1016/j.ijthermalsci.2018.09.021
14.
Malinari
,
S.
,
2004
, “
Parameter Estimation in Dynamic Plane Source Method
,”
Meas. Sci. Technol.
,
15
(
5
), pp.
807
813
.10.1088/0957-0233/15/5/005
15.
Malinarič
,
S.
, and
Dieška
,
P.
,
2009
, “
Improvements in the Dynamic Plane Source Method
,”
Int. J. Thermophys.
,
30
(
2
), pp.
608
618
.10.1007/s10765-008-0525-7
16.
Kubicár
,
L.
, and
Bohác
,
V.
,
2000
, “
A Step-Wise Method for Measuring Thermophysical Parameters of Materials
,”
Meas. Sci. Technol.
,
11
(
3
), pp.
252
258
.10.1088/0957-0233/11/3/312
17.
Li
,
X.-F.
,
Yue
,
K.
, and
Zhang
,
X.-X.
,
2013
, “
A Modified Step-Wise Transient Method for Measuring the Thermal Conductivity of Anisotropic Materials
,”
ASME
Paper No. IMECE2013-64624.10.1115/IMECE2013-64624
18.
Malinarič
,
S.
, and
Dieška
,
P.
,
2020
, “
New Evaluation of the Step-Wise Transient Measurements
,” Central European Symposium on Thermophysics 2020 (
CEST)
,
Eger, Hungary
, Sept. 2–4, p.
020019
.10.1063/5.0025894
19.
Malinarič
,
S.
, and
Elkholy
,
A.
,
2021
Measurement and Uncertainty Assessment of the Thermal Conductivity and Diffusivity of Silica Glass Using Step-Wise Transient Method
,”
Int. J. Thermophys.
,
42
(
3
), p.
36
.10.1007/s10765-020-02787-5
20.
Malinarič
,
S.
, and
Dieška
,
P.
,
2018
, “
Contribution to the Stepwise Transient Method
,”
Présenté à THERMOPHYSICS 2018: 23rd International Meeting of Thermophysics 2018
,
Smolenice, Slovakia
, Nov. 7–9, p.
020028
.10.1063/1.5047622
21.
Malinarič
,
S.
,
2016
, “
Step-Wise Transient Method
,”
Meas. Sci. Technol.
,
27
(
3
), p.
035601
.10.1088/0957-0233/27/3/035601
22.
Malinarič
,
S.
, and
Dieška
,
P.
,
2016
, “
Step - Wise Transient method - Influence of Heat Source Inertia
,”
Présenté à THERMOPHYSICS 2016: 21st International Meeting
,
Terchova, Slovakia
, Oct. 12–14, p.
040019
.10.1063/1.4955250
23.
Bal
,
M. H.
,
2011
, “
Modélisation Et Mesure De Propriétés Thermiques D'un Milieu Poreux Humide: Brique De Latérite Avec Gousse De Mil
,” Thèse De Doctorat, Ecole Supérieur Polytechnique, De Dakar.
24.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
, John Wiley & Sons, Hoboken, NJ.
25.
Castillo
,
A. G. C.
,
Gaume
,
B.
,
Rouizi
,
Y.
,
Quéméner
,
O.
, and
Glouannec
,
P.
,
2021
, “
Identification of Insulating Materials Thermal Properties by Inverse Method Using Reduced Order Model
,”
Int. J. Heat Mass Transfer
,
166
, p.
120683
.10.1016/j.ijheatmasstransfer.2020.120683
26.
Rahim
,
M.
,
Douzane
,
O.
,
Tran Le
,
A. D.
, and
Langlet
,
T.
,
2016
, “
Effect of Moisture and Temperature on Thermal Properties of Three Bio-Based Materials
,”
Constr. Build. Mater.
,
111
, pp.
119
127
.10.1016/j.conbuildmat.2016.02.061
27.
Coquard
,
R.
,
2023
, “
Analysis of the Hot-Disk Technique Applied to Low-Density Insulating materials
,”
Int. J. Therm. Sci.
,
65
, pp.
242
253
.10.1016/j.ijthermalsci.2012.10.008
You do not currently have access to this content.