Abstract

Implementing line-by-line absorption spectra in the Monte Carlo method provides benchmark solutions for radiative heat transfer in participating media. It is, however, a computationally demanding calculation, and therefore its application is limited to small and medium-scale cases. In gas mixtures, one of the most time-consuming parts is the wavenumber selection for each emission bundle (also known as photon). Due to interdependency of spectral emission of individual species, trial-and-error is needed to obtain the emission wavenumber of species. Doing trial-and-error with tight convergence threshold through large set of data increases the simulation time. This paper presents a novel scheme to select the wavenumber by adding a new dataset which circumvents the need for trial-and-error. The performance of the new scheme is exhibited in four different test cases containing CO2, H2O, and CO. An excellent agreement was observed between the results of the new and old schemes. Compared to the previously published hybrid selection scheme, the wavenumber selection is around seven times faster using the new scheme.

References

1.
Ren
,
T.
,
Modest
,
M. F.
, and
Roy
,
S.
,
2018
, “
Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051503
.10.1115/1.4038153
2.
Wu
,
B.
,
Roy
,
S. P.
, and
Zhao
,
X.
,
2020
, “
Detailed Modeling of a Small-Scale Turbulent Pool Fire
,”
Combust. Flame
,
214
, pp.
224
237
.10.1016/j.combustflame.2019.12.034
3.
Wu
,
B.
, and
Zhao
,
X.
,
2020
, “
Effects of Radiation Models on Steady and Flickering Laminar Non-Premixed Flames
,”
J. Quant. Spectrosc. Radiat. Transfer
,
253
, p.
107103
.10.1016/j.jqsrt.2020.107103
4.
Paul
,
C.
,
Roy
,
S. P.
,
Sailer
,
J.
,
Brannstrom
,
F.
,
Ahmed
,
M. M.
,
Trouve
,
A.
,
Bordbar
,
H.
,
Hostikka
,
S.
, and
McDermott
,
R.
,
2023
, “
Benchmark Radiation Modeling Data for Two Flames Relevant to Fire Simulation
,” Proceedings of the 10th International Symposium on Radiative Transfer (
RAD 2023
), Thessaloniki, Greece, June 12–16, pp.
367
373
.10.1615/RAD-23.550
5.
Modest
,
M. F.
, and
Mazumder
,
S.
,
2021
,
Radiative Heat Transfer
,
Academic Press
,
Cambridge, MA
.10.1016/B978-0-12-818143-0.00007-9
6.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1994
, “
Monte Carlo Prediction of Radiative Heat Transfer in Inhomogeneous, Anisotropic, Nongray Media
,”
J. Thermophys. Heat Transfer
,
8
(
1
), pp.
133
139
.10.2514/3.511
7.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1998
, “
Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Advances in Heat Transfer
,
31
, pp.
333
429
.10.1016/S0065-2717(08)70243-0
8.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3877
3889
.10.1016/j.ijheatmasstransfer.2007.02.018
9.
Ozawa
,
T.
,
Modest
,
M. F.
, and
Levin
,
D. A.
,
2010
, “
Spectral Module for Photon Monte Carlo Calculations in Hypersonic Nonequilibrium Radiation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
2
), p.
023406
.10.1115/1.4000242
10.
Feldick
,
A.
, and
Modest
,
M. F.
,
2011
, “
An Improved Wavelength Selection Scheme for Monte Carlo Solvers Applied to Hypersonic Plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
8
), pp.
1394
1401
.10.1016/j.jqsrt.2011.01.028
11.
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
A Hybrid Wavenumber Selection Scheme for Line-by-Line Photon Monte Carlo Simulations in High-Temperature Gases
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
8
), p.
084501
.10.1115/1.4024385
12.
Ge
,
W.
,
David
,
C.
,
Modest
,
M. F.
,
Sankaran
,
R.
, and
Roy
,
S. P.
,
2023
, “
Comparison of Spherical Harmonics Method and Discrete Ordinates Method for Radiative Transfer in a Turbulent Jet Flame
,”
J. Quant. Spectrosc. Radiat. Transfer
,
296
, p.
108459
.10.1016/j.jqsrt.2022.108459
13.
Bordbar
,
H.
,
Coelho
,
F. R.
,
Fraga
,
G.
,
França
,
F. H. R.
, and
Hostikka
,
S.
,
2021
, “
Pressure-Dependent Weighted-Sum-of-Gray-Gases Models for Heterogeneous CO2-H2O Mixtures at Sub- and Super-Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
173
, p.
121207
.10.1016/j.ijheatmasstransfer.2021.121207
14.
Solovjov
,
V. P.
,
Webb
,
B. W.
,
Andre
,
F.
, and
Lemonnier
,
D.
,
2020
, “
Locally Correlated SLW Model for Prediction of Gas Radiation in Non-Uniform Media and Its Relationship to Other Global Methods
,”
J. Quant. Spectrosc. Radiat. Transfer
,
245
, p.
106857
.10.1016/j.jqsrt.2020.106857
You do not currently have access to this content.