Abstract

Detailed characterization of the vapor cloud above a well or reservoir is not available in literature irrespective of its several practical importance. This study aims to understand the vapor cloud characteristics and vapor phase transport of a heavier-than-air vapor cloud evaporating from a heated microliter circular reservoir. Evaporation of a heavy hydrocarbon (cyclohexane) and a comparatively lighter fluid (ethanol) is studied. Digital holographic interferometry has been used for the characterization of vapor cloud. Gravimetric analysis is used for measurement of evaporation rate from the reservoir. A flat disk-shaped vapor cloud is observed in both heated and nonheated reservoir cases. This is attributed to the presence of radial outward natural convection. The evaporation rate is underpredicted by the diffusion model at a higher Grashof number, i.e., for well heating. Solutal convection dominates near the interface region and thermal convection effect increases in the region away from the liquid–vapor interface. The mole fraction profile depends on the relative strength of the thermal and solutal Grashof number. Thermal convection effect is stronger in lighter vapor of ethanol compared to that of cyclohexane. Overall, this study shows dominance of solutal convection on the vapor cloud characteristics above both heated and unheated reservoir.

References

1.
Aghvami
,
M.
, and
Faghri
,
A.
,
2011
, “
Analysis of Flat Heat Pipes With Various Heating and Cooling Configurations
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2645
2655
.10.1016/j.applthermaleng.2011.04.034
2.
Elvira
,
K. S.
,
I Solvas
,
X. C.
,
Wootton
,
R. C.
, and
Demello
,
A. J.
,
2013
, “
The Past, Present and Potential for Microfluidic Reactor Technology in Chemical Synthesis
,”
Nat. Chem.
,
5
(
11
), pp.
905
915
.10.1038/nchem.1753
3.
Walzl
,
A.
,
Kramer
,
N.
,
Mazza
,
M. R.
,
Falkenhagen
,
D.
,
Hengstschläger
,
M.
,
Schwanzer-Pfeiffer
,
D.
, and
Dolznig
,
H.
,
2012
, “
A Simple and Cost Efficient Method to Avoid Unequal Evaporation in Cellular Screening Assays, Which Restores Cellular Metabolic Activity
,”
Int. J. Appl. Sci. Technol.
,
2
(
6
), pp.
17
25
.
4.
Situma
,
C.
,
Hashimoto
,
M.
, and
Soper
,
S. A.
,
2006
, “
Merging Microfluidics With Microarray-Based Bioassays
,”
Biomol. Eng.
,
23
(
5
), pp.
213
231
.10.1016/j.bioeng.2006.03.002
5.
Kopp
,
M. U.
,
De Mello
,
A. J.
, and
Manz
,
A.
,
1998
, “
Chemical Amplification: Continuous-Flow PCR on a Chip
,”
Science
,
280
(
5366
), pp.
1046
1048
.10.1126/science.280.5366.1046
6.
Girard
,
F.
,
Antoni
,
M.
,
Faure
,
S.
, and
Steinchen
,
A.
,
2006
, “
Evaporation and Marangoni Driven Convection in Small Heated Water Droplets
,”
Langmuir
,
22
(
26
), pp.
11085
11091
.10.1021/la061572l
7.
Kelly-Zion
,
P.
,
Pursell
,
C.
,
Vaidya
,
S.
, and
Batra
,
J.
,
2011
, “
Evaporation of Sessile Drops Under Combined Diffusion and Natural Convection
,”
Colloids Surf., A
,
381
(
1–3
), pp.
31
36
.10.1016/j.colsurfa.2011.03.020
8.
Pradhan
,
T. K.
, and
Panigrahi
,
P. K.
,
2017
, “
Evaporation Induced Natural Convection Inside a Droplet of Aqueous Solution Placed on a Superhydrophobic Surface
,”
Colloids Surf., A
,
530
, pp.
1
12
.10.1016/j.colsurfa.2017.07.034
9.
Ruiz
,
O. E.
, and
Black
,
W. Z.
,
2002
, “
Evaporation of Water Droplets Placed on a Heated Horizontal Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
5
), pp.
854
863
.10.1115/1.1494092
10.
Hjelt
,
K. T.
,
van den Doel
,
R.
,
Lubking
,
W.
, and
Vellekoop
,
M. J.
,
2000
, “
Measuring Liquid Evaporation From Micromachined Wells
,”
Sens. Actuators, A
,
85
(
1–3
), pp.
384
389
.10.1016/S0924-4247(00)00413-1
11.
van den Doel
,
L. R.
, and
van Vliet
,
L. J.
,
2001
, “
Temporal Phase-Unwrapping Algorithm for Dynamic Interference Pattern Analysis in Interference-Contrast Microscopy
,”
Appl. Opt.
,
40
(
25
), pp.
4487
4500
.10.1364/AO.40.004487
12.
Rieger
,
B.
,
Van den Doel
,
L.
, and
Van Vliet
,
L.
,
2003
, “
Ring Formation in Nanoliter Cups: Quantitative Measurements of Flow in Micromachined Wells
,”
Phys. Rev. E
,
68
(
3
), p.
036312
.10.1103/PhysRevE.68.036312
13.
Chen
,
C. T.
,
Tseng
,
F. G.
, and
Chieng
,
C. C.
,
2005
, “
Evaporation Evolution of Volatile Liquid Droplets in Nanoliter Well Array
,”
Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems
, Digest of Technical Papers, Transducers ‘05, Seoul, South Korea,
June 5–9
, pp.
812
815
.
14.
Chen
,
C. T.
,
Tseng
,
F. G.
, and
Chieng
,
C. C.
,
2006
, “
Evaporation Evolution of Volatile Liquid Droplets in Nanoliter Wells
,”
Sens. Actuators, A
,
130–131
, pp.
12
19
.10.1016/j.sna.2005.09.010
15.
Chen
,
C.-T.
,
Chieng
,
C.-C.
, and
Tseng
,
F.-G.
,
2007
, “
Uniform Solute Deposition of Evaporable Droplet in Nanoliter Wells
,”
J. Microelectromech. Syst.
,
16
(
5
), pp.
1209
1218
.10.1109/JMEMS.2007.904327
16.
Lynn
,
N. S.
,
Henry
,
C. S.
, and
Dandy
,
D. S.
,
2009
, “
Evaporation From Microreservoirs
,”
Lab Chip
,
9
(
12
), pp.
1780
1788
.10.1039/b900556k
17.
Shukla
,
D.
, and
Panigarhi
,
P. K.
,
2020
, “
Digital Holographic Interferometry Investigation of Liquid Hydrocarbon Vapor Cloud Above a Circular Well
,”
Appl. Opt.
,
59
(
19
), pp.
5851
5863
.10.1364/AO.394874
18.
Lu
,
G.
,
Duan
,
Y.-Y.
,
Wang
,
X.-D.
, and
Lee
,
D.-J.
,
2011
, “
Internal Flow in Evaporating Droplet on Heated Solid Surface
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4437
4447
.10.1016/j.ijheatmasstransfer.2011.04.039
19.
Bin
,
L.
,
Bennacer
,
R.
,
Sefiane
,
K.
, and
Steinchen
,
A.
,
2016
, “
Transient Effects in Evaporating Sessile Drops: With and Without Heating
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
9
), p.
091009
.10.1115/1.4032954
20.
Yong Park
,
J.
,
Gardner
,
A.
,
King
,
W. P.
, and
Cahill
,
D. G.
,
2014
, “
Droplet Impingement and Vapor Layer Formation on Hot Hydrophobic Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
9
), p.
092902
.10.1115/1.4027856
21.
Ait Saada
,
M.
,
Chikh
,
S.
, and
Tadrist
,
L.
,
2010
, “
Numerical Investigation of Heat and Mass Transfer of an Evaporating Sessile Drop on a Horizontal Surface
,”
Phys. Fluids
,
22
(
11
), p.
112115
.10.1063/1.3488676
22.
Carle
,
F.
,
Sobac
,
B.
, and
Brutin
,
D.
,
2013
, “
Experimental Evidence of the Atmospheric Convective Transport Contribution to Sessile Droplet Evaporation
,”
Appl. Phys. Lett.
,
102
(
6
), p.
061603
.10.1063/1.4792058
23.
Carle
,
F.
,
Semenov
,
S.
,
Medale
,
M.
, and
Brutin
,
D.
,
2016
, “
Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model
,”
Int. J. Therm. Sci.
,
101
, pp.
35
47
.10.1016/j.ijthermalsci.2015.10.012
24.
Misyura
,
S.
,
2018
, “
Effect of Various Key Factors on the Law of Droplet Evaporation on the Heated Horizontal Wall
,”
Chem. Eng. Res. Des.
,
129
, pp.
306
313
.10.1016/j.cherd.2017.11.033
25.
Strizhak
,
P.
,
Volkov
,
R.
,
Misyura
,
S.
,
Lezhnin
,
S.
, and
Morozov
,
V.
,
2018
, “
The Role of Convection in Gas and Liquid Phases at Droplet Evaporation
,”
Int. J. Therm. Sci.
,
134
, pp.
421
439
.10.1016/j.ijthermalsci.2018.08.031
26.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Influence of Surface Wettability on Transport Mechanisms Governing Water Droplet Evaporation
,”
Langmuir
,
30
(
32
), pp.
9726
9730
.10.1021/la501931x
27.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2020
, “
Transport Mechanisms During Water Droplet Evaporation on Heated Substrates of Different Wettability
,”
Int. J. Heat Mass Transfer
,
152
, p.
119524
.10.1016/j.ijheatmasstransfer.2020.119524
28.
Charogiannis
,
A.
, and
Beyrau
,
F.
,
2013
, “
Laser Induced Phosphorescence Imaging for the Investigation of Evaporating Liquid Flows
,”
Exp. Fluids
,
54
(
5
), p.
1518
.10.1007/s00348-013-1518-2
29.
Voytkov
,
I.
,
Volkov
,
R.
, and
Strizhak
,
P.
,
2019
, “
Temperature and Velocity of the Gas–Vapor Mixture in the Trace of Several Evaporating Water Droplets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
1
), p.
011502
.10.1115/1.4041556
30.
Dehaeck
,
S.
,
Rednikov
,
A.
, and
Colinet
,
P.
,
2014
, “
Vapor-Based Interferometric Measurement of Local Evaporation Rate and Interfacial Temperature of Evaporating Droplets
,”
Langmuir
,
30
(
8
), pp.
2002
2008
.10.1021/la404999z
31.
Toker
,
G.
, and
Stricker
,
J.
,
1996
, “
Holographic Study of Suspended Vaporizing Volatile Liquid Droplets in Still Air
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3475
3482
.10.1016/0017-9310(96)00018-X
32.
Kelly-Zion
,
P.
,
Pursell
,
C. J.
,
Hasbamrer
,
N.
,
Cardozo
,
B.
,
Gaughan
,
K.
, and
Nickels
,
K.
,
2013
, “
Vapor Distribution Above an Evaporating Sessile Drop
,”
Int. J. Heat Mass Transfer
,
65
, pp.
165
172
.10.1016/j.ijheatmasstransfer.2013.06.003
33.
Kelly-Zion
,
P. L.
,
Pursell
,
C. J.
,
Booth
,
R. S.
, and
VanTilburg
,
A. N.
,
2009
, “
Evaporation Rates of Pure Hydrocarbon Liquids Under the Influences of Natural Convection and Diffusion
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3305
3313
.10.1016/j.ijheatmasstransfer.2009.01.015
34.
Shukla
,
D.
, and
Panigrahi
,
P. K.
,
2021
, “
Interaction of Vapor Cloud and Its Effect on Evaporation From Microliter Coaxial Well
,”
Colloids Surf., A
,
629
, p.
127391
.10.1016/j.colsurfa.2021.127391
35.
Narayanan
,
S.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
,
2009
, “
Gas-Assisted Thin-Film Evaporation From Confined Spaces for Dissipation of High Heat Fluxes
,”
Nanoscale Microscale Thermophys. Eng.
,
13
(
1
), pp.
30
53
.10.1080/15567260802625908
36.
Xie
,
J.
,
Tan
,
Y.
,
Duan
,
F.
,
Ranjith
,
K.
,
Wong
,
T.
,
Toh
,
K.
,
Choo
,
K.
, and
Chan
,
P.
,
2013
, “
Study of Heat Transfer Enhancement for Structured Surfaces in Spray Cooling
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
464
472
.10.1016/j.applthermaleng.2013.05.047
37.
Silk
,
E. A.
,
Kim
,
J.
, and
Kiger
,
K.
,
2006
, “
Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4910
4920
.10.1016/j.ijheatmasstransfer.2006.05.031
38.
Wang
,
Y.
,
Zhou
,
N.
,
Yang
,
Z.
, and
Jiang
,
Y.
,
2016
, “
Experimental Investigation of Aircraft Spray Cooling System With Different Heating Surfaces and Different Additives
,”
Appl. Therm. Eng.
,
103
, pp.
510
521
.10.1016/j.applthermaleng.2016.04.124
39.
Linstrom
,
P. F.
, and
Mallard
,
W.
,
2001
, “
NIST Chemistry WebBook-SRD 69
,” National Institute of Standards and Technology, Gaithersburg, MD.
40.
Willingham
,
C. B.
,
Taylor
,
W. J.
,
Pignocco
,
J. M.
, and
Rossini
,
F. D.
,
1945
, “
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons
,”
J. Res. Natl. Bur. Stand.
,
35
(
3
), pp.
219
244
.10.6028/jres.035.009
41.
Cummings
,
G. M.
, and
Ubbelohde
,
A.
,
1953
, “
767. Collision Diameters of Flexible Hydrocarbon Molecules in the Vapour Phase: The Hydrogen Effect
,”
J. Chem. Soc. (Resumed)
, pp.
3751
3755
.10.1039/JR9530003751
42.
Perry
,
R. H.
, and
Dw
,
G.
,
2007
,
Perry's Chemical Engineers' Handbook
, 8th illustrated ed.,
McGraw-Hill
,
New York
.
43.
Takeda
,
M.
,
Ina
,
H.
, and
Kobayashi
,
S.
,
1982
, “
Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry
,”
J. Opt. Soc. Am.
,
72
(
1
), pp.
156
160
.10.1364/JOSA.72.000156
44.
Goldstein
,
R. M.
,
Zebker
,
H. A.
, and
Werner
,
C. L.
,
1988
, “
Satellite Radar Interferometry: Two‐Dimensional Phase Unwrapping
,”
Radio Sci.
,
23
(
4
), pp.
713
720
.10.1029/RS023i004p00713
45.
Ma
,
S.
,
Gao
,
H.
, and
Wu
,
L.
,
2008
, “
Modified Fourier-Hankel Method Based on Analysis of Errors in Abel Inversion Using Fourier Transform Techniques
,”
Appl. Opt.
,
47
(
9
), pp.
1350
1357
.10.1364/AO.47.001350
46.
Gardiner
,
W.
, Jr
,
Hidaka
,
Y.
, and
Tanzawa
,
T.
,
1981
, “
Refractivity of Combustion Gases
,”
Combust. Flame
,
40
, pp.
213
219
.10.1016/0010-2180(81)90124-3
47.
Hassan
,
G.
,
El-Kashef
,
H.
,
El-Baradie
,
B.
, and
El-Labban
,
M.
,
1996
, “
Measurement of the Physical Properties of Cyclohexane Using a Laser Interferometric Technique
,”
Opt. Mater.
,
5
(
4
), pp.
327
332
.10.1016/0925-3467(95)00030-5
48.
Aborn
,
J. H.
,
El-Difrawy
,
S. A.
,
Novotny
,
M.
,
Gismondi
,
E. A.
,
Lam
,
R.
,
Matsudaira
,
P.
,
Mckenna
,
B. K.
,
O'Neil
,
T.
,
Streechon
,
P.
, and
Ehrlich
,
D. J.
,
2005
, “
A 768-Lane Microfabricated System for High-Throughput DNA Sequencing
,”
Lab Chip
,
5
(
6
), pp.
669
674
.10.1039/b501104c
49.
Kretschmer
,
C. B.
, and
Wiebe
,
R.
,
1949
, “
Liquid-Vapor Equilibrium in Ethanol-Touluene Solutions
,”
J. Am. Chem. Soc.
,
71
(
5
), pp.
1793
1797
.10.1021/ja01173a076
50.
Braig
,
F.
,
Narrog
,
F.
,
Sauer
,
H. M.
, and
Dörsam
,
E.
,
2021
, “
Interferometric Imaging of Solvent Vapor of Evaporating Liquid Films
,”
Langmuir
,
37
(
17
), pp.
5385
5392
.10.1021/acs.langmuir.1c00566
You do not currently have access to this content.