Abstract

The purpose of the current experimental study is to assess the influence of impinging air jet movement on the heat transfer of a fixed flat plate. The experiments are conducted with varying the nozzle velocity (Vn) from 400 to 1000 mm/min, and the Reynolds number (Re) from 8000 to 20,000 at a nozzle-to-plate distance (H/D) of 2 and 6. A comparison between a movable nozzle and a fixed nozzle based on the temperature contours and local Nusselt number is presented. Additionally, the local Nusselt number, heat transfer uniformity index, and uniformity of heat transfer are evaluated. The results demonstrate that the local Nusselt number of 24.8 has a maximum value at a Vnof 400 mm/min, a Re of 20,000, and a H/D of 2. The uniformity of heat transfer is enhanced by increasing the Vn, and its maximum value of 89.5% is maintained at a Vn of 1000 mm/min, Re of 20,000, and H/D of 6. Additionally, the heat transfer uniformity index decreases with increasing the Vnwhere its maximum value is 0.34 at a Vn of 400 mm/min, a Re of 8000, and a H/D of 2.

References

1.
Chitsazan
,
A.
, and
Glasmacher
,
B.
,
2020
, “
Numerical Investigation of Heat Transfer and Pressure Force From Multiple Jets Impinging on a Moving Flat Surface
,”
Int. J. Heat Technol.
,
38
(
3
), pp.
601
610
.10.18280/ijht.380304
2.
Barbosa
,
F. V.
,
Sousa
,
S. D. T.
,
Teixeira
,
S. F. C. F.
, and
Teixeira
,
J. C. F.
,
2021
, “
Application of Taguchi Method for the Analysis of a Multiple Air Jet Impingement System With and Without Target Plate Motion
,”
Int. J. Heat Mass Transfer
,
176
, p.
121504
.10.1016/j.ijheatmasstransfer.2021.121504
3.
Kadiyala
,
P. K.
, and
Chattopadhyay
,
H.
,
2018
, “
Numerical Analysis of Heat Transfer From a Moving Surface Due to Impingement of Slot Jets
,”
Heat Transfer Eng.
,
39
(
2
), pp.
98
106
.10.1080/01457632.2017.1288045
4.
Satish
,
N.
, and
Venkatasubbaiah
,
K.
,
2019
, “
Numerical Investigations of Flow and Heat Transfer Characteristics Between Turbulent Double Jet Impingement and Moving Plate
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
15
), p.
051001
.10.1115/1.4042584
5.
Pawar
,
S.
, and
Patel
,
D. K.
,
2020
, “
Study of Conjugate Heat Transfer From the Impingement of an Inclined Free Slot Jet Onto the Moving Hot Surface
,”
Int. Commun. Heat Mass Transfer
,
111
, p.
104429
.10.1016/j.icheatmasstransfer.2019.104429
6.
Achari
,
A. M.
, and
Das
,
M. K.
,
2017
, “
Conjugate Heat Transfer Study of a Turbulent Slot Jet Impinging on a Moving Plate
,”
Heat Mass Transfer
,
53
(
3
), pp.
1017
1035
.10.1007/s00231-016-1873-7
7.
Huang
,
T.
,
Yang
,
Z.
,
Diao
,
S.
,
Huang
,
Z.
,
Zhang
,
Y.
, and
Zhou
,
H.
,
2021
, “
Flow Structure and Heat Transfer Analysis of the Floatation Nozzle With a Moving Wall
,”
Eng. Comput.
,
38
(
1
), pp.
36
57
.10.1108/EC-01-2020-0046
8.
Chitsazan
,
A.
,
Klepp
,
G.
,
Glasmacher
,
B.
, and
Pour
,
K. M.
,
2021
, “
Numerical Optimization of Drying Energy Consumption From Multiple Jets Impinging on a Moving Curved Surface
,”
Int. J. Heat Technol.
,
39
(
3
), pp.
755
762
.10.18280/ijht.390309
9.
Barbosa
,
F. V.
,
Teixiera
,
S. F. C. F.
, and
Teixeira
,
J. C. F.
,
2022
, “
2D PIV Analysis of the Flow Dynamics of Multiple Jets Impinging on a Complex Moving Plate
,”
Int. J. Heat Mass Transfer
,
188
, p.
122600
.10.1016/j.ijheatmasstransfer.2022.122600
10.
Barbosa
,
F.
,
Teixeira
,
S.
,
Costa
,
C.
,
Marques
,
F.
, and
Teixeira
,
J. C.
,
2020
, “
Experimental Study of Multiple Air Jets Impinging a Moving Flat Plate
,”
ASME
Paper No. IMECE2020-23996.10.1115/IMECE2020-23996
11.
Senter
,
J.
, and
Solliec
,
C.
,
2007
, “
Flow Field Analysis of a Turbulent Slot Air Jet Impinging on a Moving Flat Surface
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
708
719
.10.1016/j.ijheatfluidflow.2006.08.002
12.
Shah
,
S.
,
2022
, “
A Numerical Study of Heat Transfer From an Array of Jets Impinging on a Flat Moving Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
4)
, p.
042302
.10.1115/1.4053451
13.
Chattopadhyay
,
H.
, and
Benim
,
A. C.
,
2011
, “
Turbulent Heat Transfer Over a Moving Surface Due to Impinging Slot Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
10
), p.
104502
.10.1115/1.4004075
14.
Chattopadhyay
,
H.
, and
Saha
,
S. K.
,
2002
, “
Simulation of Laminar Slot Jets Impinging on a Moving Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
6
), pp.
1049
1055
.10.1115/1.1501089
15.
Ai
,
X.
,
Xu
,
Z. G.
,
Zhao
,
C. Y.
,
Xu
,
Z. G.
, and
Zhao
,
C. Y.
,
2017
, “
Experimental Study on Heat Transfer of Jet Impingement With a Moving Nozzle
,”
Appl. Therm. Eng.
,
115
, pp.
682
691
.10.1016/j.applthermaleng.2017.01.004
16.
Abanti
,
D.
,
Sonal
,
K.
, and
Pabitra
,
H.
,
2020
, “
Heat Transfer and Thermal Characteristics Effects on Moving Plate Impinging From Cu-Water Nanofluid Jet
,”
J. Therm. Sci.
,
29
, pp.
182
193
.10.1007/s11630-019-1107-7
17.
Behera
,
V. M.
, and
Rathore
,
S. K.
,
2022
, “
The Effect of Plate Motion on Heat Transfer Enhancement Using Turbulent Offset Jet Flow: A Conjugate Approach
,”
Int. Commun. Heat Mass Transfer
,
136
, p.
106173
.10.1016/j.icheatmasstransfer.2022.106173
18.
Mohaghegh
,
M. R.
, and
Rahimi
,
A. B.
,
2019
, “
Single- and Two-Phase Water Jet Impingement Heat Transfer on a Hot Moving Surface
,”
J. Therm. Anal. Calorim.
,
137
(
4
), pp.
1401
1411
.10.1007/s10973-019-08072-4
19.
Sharma
,
A. K.
, and
Sahu
,
S. K.
,
2019
, “
The Thermal and Rewetting Behavior of Hot Moving Surface by Water Jet Impingement
,”
Appl. Therm. Eng.
,
159
, p.
113950
.10.1016/j.applthermaleng.2019.113950
20.
Gradeck
,
M.
,
Kouachi
,
A.
,
Dani
,
A.
,
Arnoult
,
D.
, and
Boréan
,
J. L.
,
2006
, “
Experimental and Numerical Study of the Hydraulic Jump of an Impinging Jet on a Moving Surface
,”
Exp. Therm. Fluid Sci.
,
30
(
3
), pp.
193
201
.10.1016/j.expthermflusci.2005.05.006
21.
Jha
,
J. M.
,
Ravikumar
,
S. V.
,
Sarkar
,
I.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2016
, “
Jet Impingement Cooling of a Hot Moving Steel Plate: An Experimental Study
,”
Exp. Heat Transfer
,
29
(
5
), pp.
615
631
.10.1080/08916152.2015.1046019
22.
Rathore
,
S. S.
, and
Verma
,
S. K.
,
2022
, “
Computational Investigation on the Thermal and Flow Characteristics of a Turbulent Dual Jet Impinging on a Heated Moving Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
9)
, p.
092301
.10.1115/1.4054717
23.
Dutta
,
P.
, and
Chattopadhyay
,
H.
,
2022
, “
Heat Transfer Due to Annular Jets Impinging on a Moving Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
8
), p.
082301
.10.1115/1.4054579
24.
Attalla
,
M.
,
Maghrabie
,
H. M.
,
Qayyum
,
A.
,
Al-Hasnawi
,
A. G.
, and
Specht
,
E.
,
2017
, “
Influence of the Nozzle Shape on Heat Transfer Uniformity for in-Line Array of Impinging Air Jets
,”
Appl. Therm. Eng.
,
120
, pp.
160
169
.10.1016/j.applthermaleng.2017.03.134
25.
Attalla
,
M.
, and
Specht
,
E.
,
2009
, “
Heat Transfer Characteristics From in-Line Arrays of Free Impinging Jets
,”
Heat Mass Transfer
,
45
(
5
), pp.
537
543
.10.1007/s00231-008-0452-y
26.
Singh
,
P. K.
,
Sahu
,
S. K.
,
Upadhyay
,
P. K.
, and
Jain
,
A. K.
,
2020
, “
Experimental Investigation on Thermal Characteristics of Hot Surface by Synthetic Jet Impingement
,”
Appl. Therm. Eng.
,
165
, p.
114596
.10.1016/j.applthermaleng.2019.114596
27.
Chang
,
S. W.
, and
Shen
,
H.
,
2019
, “
Heat Transfer of Impinging Jet Array With Web-Patterned Grooves on Nozzle Plate
,”
Int. J. Heat Mass Transf
er,
141
, pp.
129
144
.10.1016/j.ijheatmasstransfer.2019.06.048
28.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
, 2nd ed.,
University Science Books
, Sausalito, CA.
29.
Attalla
,
M.
, and
Salem
,
M.
,
2013
, “
Effect of Nozzle Geometry on Heat Transfer Characteristics From a Single Circular Air Jet
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
723
733
.10.1016/j.applthermaleng.2012.09.032
30.
San
,
J.
, and
Shiao
,
W.
,
2006
, “
Effects of Jet Plate Size and Plate Spacing on the Stagnation Nusselt Number for a Confined Circular Air Jet Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3477
3486
.10.1016/j.ijheatmasstransfer.2006.02.055
31.
Kilic
,
M.
,
Calisir
,
T.
, and
Baskaya
,
S.
,
2017
, “
Experimental and Numerical Study of Heat Transfer From a Heated Flat Plate in a Rectangular Channel With an Impinging Air Jet
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
1
), pp.
329
344
.10.1007/s40430-016-0521-y
32.
Youn
,
J.
,
Choi
,
W.
, and
Kim
,
S.
,
2021
, “
Numerical Investigation of Jet Array Impingement Cooling With Effusion Holes
,”
Appl. Therm. Eng.
,
197
, p.
117347
.10.1016/j.applthermaleng.2021.117347
33.
Yu
,
P.
,
Zhu
,
K.
,
Sun
,
T.
,
Yuan
,
N.
, and
Ding
,
J.
,
2017
, “
Heat Transfer Rate and Uniformity of Mist Flow Jet Impingement for Glass Tempering
,”
Int. J. Heat Mass Transfer
,
115
, pp.
368
378
.10.1016/j.ijheatmasstransfer.2017.08.065
You do not currently have access to this content.