Abstract

The nucleate pool is a useful technique of heat dissipation in a variety of thermal applications. This study investigates the effect of the gridded metal surface (GMS) with and without protrusions on the heat transfer from a surface maintained at a temperature above the saturation temperature of water. The experimental data have been collected pertaining to boiling heat transfer at atmospheric pressure by varying the grid size of gridded metal surface with protrusions from 6 mm to 22.5 mm placed over a boiling surface having microporous coating. The mean particle diameter of coating is varied as 11, 24, and 66 μm during the experimentation. It is observed that the increase in the boiling heat transfer coefficient of the aluminum disk with GMS with protrusions of grid size 11.5 mm compared to that of the smooth boiling surface is found to be 10.7%. Furthermore, the effect of GMS having protrusions with coated surface on the heat transfer is studied. The results showed that by using GMS having protrusions and with coated surface, the heat transfer is further enhanced. The boiling heat transfer coefficient obtained in case of GMS with protrusions (grid size = 11.5 mm) and microporous-coated surface (dm= 66 μm) shows the maximum enhancement of 39.93% in comparison to the smooth surface.

References

1.
Honda
,
H.
, and
Wei
,
J. J.
,
2004
, “
Enhanced Boiling Heat Transfer From Electronic Components by Use of Surface Microstructures
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
159
169
.10.1016/S0894-1777(03)00035-9
2.
Xu
,
J.
,
Ji
,
X.
,
Zhang
,
W.
, and
Liu
,
G.
,
2008
, “
Pool Boiling Heat Transfer of Ultra-Light Copper Foam With Open Cells
,”
Int. J. Multiphase Flow
,
34
(
11
), pp.
1008
1022
.10.1016/j.ijmultiphaseflow.2008.05.003
3.
Poniewski
,
M. E.
, and
Thome
,
J. R.
,
2008
, “
Nucleate Boiling on Micro-Structured Surfaces
,”
Heat Transfer Research, Inc. (HTRI)
,
College Station, TX
.
4.
Byon
,
C.
,
Choi
,
S.
, and
Kim
,
S. J.
,
2013
, “
Critical Heat Flux of Bi-Porous Sintered Copper Coatings in FC-72
,”
Int. J. Heat Mass Transfer
,
65
, pp.
655
661
.10.1016/j.ijheatmasstransfer.2013.06.029
5.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Multiphase Flow
,
36
(
10
), pp.
780
792
.10.1016/j.ijmultiphaseflow.2010.06.003
6.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhancement of Saturation Boiling of PF-5060 on Micro Porous Copper Dendrite Surfaces
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071501
.10.1115/1.4000975
7.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H.
, and
Attinger
,
D.
,
2010
, “
Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling?
,”
Appl. Phys. Lett.
,
97
(
14
), p.
141909
.10.1063/1.3485057
8.
Xu
,
J.
,
Yang
,
M.
,
Xu
,
J.
, and
Ji
,
X.
,
2012
, “
Vertically Oriented TiO2 Nanotube Arrays With Different Anodization Times for Enhanced Boiling Heat Transfer
,”
Sci. China Technol. Sci.
,
55
(
8
), pp.
2184
2190
.10.1007/s11431-012-4892-8
9.
Kim
,
B. S.
,
Shin
,
S.
,
Lee
,
D.
,
Choi
,
G.
,
Lee
,
H.
,
Kim
,
K. M.
, and
Cho
,
H. H.
,
2014
, “
Stable and Uniform Heat Dissipation by Nucleate-Catalytic Nanowires for Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
70
, pp.
23
32
.10.1016/j.ijheatmasstransfer.2013.10.061
10.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
11.
Kim
,
H.
, and
Kim
,
M.
,
2009
, “
Experimental Study of the Characteristics and Mechanism of Pool Boiling CHF Enhancement Using Nanofluids
,”
Heat Mass Transfer
,
45
(
7
), pp.
991
998
.10.1007/s00231-007-0318-8
12.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
, “
Pool-Boiling CHF Enhancement by Modulated Porous Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.10.1016/S0017-9310(01)00084-9
13.
Mori
,
S.
, and
Okuyama
,
K.
,
2009
, “
Enhancement of the Critical Heat Flux in Saturated Pool Boiling Using Honeycomb Porous Media
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
946
951
.10.1016/j.ijmultiphaseflow.2009.05.003
14.
Lienhard
,
J. H.
,
Dhir
,
V. K.
, and
Riherd
,
D. M.
,
1973
, “
Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
477
482
.10.1115/1.3450092
15.
Das
,
S.
,
Kumar
,
D. S.
, and
Bhaumik
,
S.
,
2016
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface
,”
Appl. Therm. Eng.
,
96
, pp.
555
567
.10.1016/j.applthermaleng.2015.11.117
16.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.10.1063/1.4724190
17.
Yao
,
Z.
,
Lu
,
Y. W.
, and
Kandlikar
,
S. G.
,
2013
, “
Pool Boiling Heat Transfer Enhancement Through Nanostructures on Silicon Microchannels
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031002
.10.1115/1.4007425
18.
Moon
,
H. W.
,
Yoon
,
Y. J.
,
Park
,
J. H.
,
Myung
,
B.-S.
, and
Kim
,
D. E.
,
2016
, “
Dynamic Wetting and Boiling Characteristics on Micro-Structured and Micro/Nano Hierarchically Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
19
26
.10.1016/j.expthermflusci.2015.11.019
19.
Jaikumar
,
A.
, and
Kandlikar
,
S.
,
2016
, “
Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels
,”
Appl. Phys. Lett.
,
108
(
4
), p.
041604
.10.1063/1.4941032
20.
Mt Aznam
,
S.
,
Mori
,
S.
,
Ogoshi
,
A.
, and
Okuyama
,
K.
,
2017
, “
CHF Enhancement of a Large Heated Surface by a Honeycomb Porous Plate and a Gridded Metal Structure in a Saturated Pool Boiling of Nanofluid
,”
Int. J. Heat Mass Transfer
,
115
, pp.
969
980
.10.1016/j.ijheatmasstransfer.2017.07.089
21.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance
,”
ASME J. Heat Transfer
,
139
(
5
), p.
051501
.10.1115/1.4035247
22.
Kim
,
J.
,
Jun
,
S.
,
Lee
,
J.
,
Godinez
,
J.
, and
You
,
S. M.
,
2017
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface
,”
ASME J. Heat Transfer
,
139
(
10
), p.
101501
.10.1115/1.4036599
23.
Khalili Sadaghiani
,
A.
,
Reza Motezakker
,
A.
,
Volkan Özpınar
,
A.
,
Özaydın İnce
,
G.
, and
Koşar
,
A.
,
2017
, “
Pool Boiling Heat Transfer Characteristics of Inclined pHEMA-Coated Surfaces
,”
ASME J. Heat Transfer
,
139
(
11
), p.
111501
.10.1115/1.4036651
24.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
,
1993
, “
Guidelines for Evaluation and Expressing the Uncertainty of NIST Measurement Results
,”
NIST
,
Gaithersburg, MD
,
Technical Note 1297
, pp.
1
20
.https://www.nist.gov/pml/nist-technical-note-1297/nist-guidelines-evaluating-and-expressing-uncertainty-nist-measurement
You do not currently have access to this content.