Abstract

The performance models for high-temperature metallic recuperators considering one and two-dimensional heat transfer are presented. In one-dimensional model, an explicit expression to represent the effect of both the temperature and product of partial pressure and mean beam length on the emissivity is developed using emissivity charts. The effect of upstream and downstream surroundings is neglected. A two-dimensional heat transfer model is developed using zone method along with sum-of-gray-gases approximation to study the effect of upstream and downstream surroundings on performance. The results from the two models are compared. For lower values of inlet flue gas temperatures and higher mass flow rates, one-dimensional model predicts results within 5% of two-dimensional model. One-dimensional model provides a simplified solution for the assessment of recuperator performance but predicts the surface temperature distribution on a relatively lower side for higher inlet flue gas temperatures and low mass flow rates.

References

1.
Trinks
,
W.
,
Mawhinney
,
M. H.
,
Shannon
,
R. A.
,
Reed
,
R. J.
, and
Garvey
,
J. R.
,
2004
,
Industrial Furnaces
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
2.
Modest
,
M. F.
,
1993
,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
3.
Sharma
,
H.
,
Kumar
,
A.
,
Goel
,
V.
, and
Khurana
,
S.
,
2014
, “
A Review of Metallic Radiation Recuperators for Thermal Exhaust Heat Recovery
,”
J. Mech. Sci. Technol.
,
28
(
3
), pp.
1099
1111
.10.1007/s12206-013-1186-4
4.
Modest
,
M. F.
,
1991
, “
The Weighted Sum of Gray Gases Model for Arbitrary Solution Methods in Radiative Transfer
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
650
656
.10.1115/1.2910614
5.
Mori
,
Y.
,
Yamada
,
Y.
, and
Hijikata
,
K.
,
1980
, “
Radiation Effects on Performances of Radiative Gas Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1079
1089
.10.1016/0017-9310(80)90172-6
6.
Incropera
,
F. P.
,
Prescott
,
P. J.
, and
Voelkel
,
D. D.
,
1985
, “
Hybrid Systems for Furnace Waste Heat Recovery: 1. Use of a Radiation Recuperator With a Rankine Cycle
,”
Heat Recovery Syst. CHP
,
5
(
4
), pp.
321
333
.10.1016/0198-7593(85)90006-2
7.
Mediokritskii
,
E. L.
,
Gaponov
,
V. L.
, and
Loginov
,
V. E.
,
1997
, “
Study of Heat Transfer in Computer Models
,”
J. Eng. Phys. Thermophys.
,
70
(
1
), pp.
119
122
.10.1007/s10891-997-0022-z
8.
Jolly
,
A. J.
,
O'Doherty
,
T.
, and
Bates
,
C. J.
,
1998
, “
COHEX: A Computer Model for Solving the Thermal Energy Exchange in an Ultra High Temperature Heat Exchanger. Part A: Computational Theory
,”
Appl. Therm. Eng.
,
18
(
12
), pp.
1263
1276
.10.1016/S1359-4311(97)00091-4
9.
Kim
,
W.
,
1999
, “
Analysis on Prediction of Temperature Distribution in an Annular Radiative Recuperator
,”
Int. J. Energy Res.
,
23
(
7
), pp.
637
647
.10.1002/(SICI)1099-114X(19990610)23:7<637::AID-ER502>3.0.CO;2-E
10.
Sharma
,
H.
,
Kumar
,
A.
, and
Goel
,
V.
,
2010
, “
Performance Model of Metallic Concentric Tube Recuperator With Counter Flow Arrangement
,”
Heat Mass Transfer
,
46
(
3
), pp.
295
304
.10.1007/s00231-009-0571-0
11.
Sharma
,
H.
,
Kumar
,
A.
, and
Goel
,
V.
,
2012
, “
Performance Analysis of Metallic Concentric Tube Recuperator in Parallel Flow Arrangement
,”
Int. J. Heat Mass Transfer
,
55
, pp.
7760
7771
.10.1016/j.ijheatmasstransfer.2012.07.084
12.
Voelkel
,
D. D.
, and
Dmcropera
,
F. P.
,
1984
, “
Performance Model for a Radiation Recuperator
,”
Heat Transfer Eng.
,
5
(
1–2
), pp.
74
84
.10.1080/01457638408962770
13.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
,
1967
,
Radiative Transfer
,
McGraw-Hill
,
New York
.
14.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
602
608
.10.1115/1.3245174
15.
Seehausen
,
J. W.
,
1987
, “
The Development and Operation of High Temperature Metallic Recuperators in the Fiber Glass Industry. Heat Transfer—Pittusburgh
,”
Symp. Ser. Am. Inst. Chem. Eng.
,
83
(
257
), pp.
272
277
.
You do not currently have access to this content.