Abstract

The unified gas kinetic scheme (UGKS) is introduced to simulate the near transition regime gas flow and heat transfer in microchannel confined between isothermal and nonisothermal parallel plates. The argon gas is used and its inlet Knudsen number (Knin) ranges from 0.0154 to 0.0715. It is found that: (1) both microchannel gas flows under isothermal and nonisothermal parallel plates display a trend of speed acceleration and temperature decrease along flow direction, for which the microscopic mechanism explanation is first proposed; (2) inlet gas streamlines under nonisothermal plates condition deviate from the parallel distributions under isothermal plates condition due to the dual driving effects of pressure drop along flow direction and temperature difference along cross section; (3) gas temperature, pressure, density and viscosity distributions along cross section under nonisothermal plates condition deviate from the parabolic distributions under isothermal plates condition, while the gas velocity keeps the parabolic distribution due to the effect of Knudsen layer; (4) as channel height increases or channel length and gas molecular mean free path decrease, the gas temperature distribution along cross section under nonisothermal plates condition tends to transition from linear to curve one due to the decreasing effect of heat transfer along cross section and increasing effect of gas acceleration along flow direction, this transition from linear to curve one becomes more obvious along flow direction. (5) the gas velocity under nonisothermal plates condition decreases with the increase of inlet gas temperature (Tin), lower plate temperature (Tl) and Knin, while the gas temperature increases with the increase of Tin, Tl and Knin.

References

1.
Hagemann
,
R.
,
Noelke
,
C.
,
Rau
,
T.
,
Kaierle
,
S.
,
Overmeyer
,
L.
,
Wesling
,
V.
, and
Wolkers
,
W.
,
2015
, “
Design, Processing, and Characterization of Nickel Titanium Micro-Actuators for Medical Implants
,”
J. Laser Appl.
,
27
(
S2
), p.
S29203
.10.2351/1.4906381
2.
Widyaparaga
,
A.
,
Kuwamoto
,
M.
,
Sakoda
,
N.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2012
, “
Theoretical and Experimental Study of a Flexible Wiretype Joule-Thomson Microrefrigerator for Use in Cryosurgery
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020903
.10.1115/1.4004937
3.
Ortiz
,
J. J.
,
Ortiz
,
G. P.
,
Nigri
,
C.
, and
Lasorsa
,
C.
,
2013
, “
Scalable Design of an IMS Cross-Flow Micro-Generator/Ion Detector
,”
J. Micromech. Microeng.
,
23
(
4
), p.
045024
.10.1088/0960-1317/23/4/045024
4.
Yang
,
X. G.
,
van Ommen
,
J. R.
, and
Mudde
,
R. F.
,
2015
, “
Gas Distribution of a Downward Micro-Nozzle Assisted Fluidized Bed of Fine Powder
,”
Chem. Eng. J.
,
264
, pp.
945
953
.10.1016/j.cej.2014.11.127
5.
Beskok
,
A.
,
2001
, “
Validation of a New Velocity-Slip Model for Separated Gas Microflows
,”
Numer. Heat Transfer B
,
40
(
6
), pp.
451
471
.10.1080/104077901753306593
6.
Yang
,
Q.
,
Zhang
,
H. J.
, and
Liu
,
Y. L.
,
2016
, “
Improved Modified Reynolds Equation for Thin-Film Gas Lubrication From an Extended Slip Velocity Boundary Condition
,”
Microsyst. Technol.
,
22
(
12
), pp.
2869
2875
.10.1007/s00542-015-2667-4
7.
Madiebo
,
K. I.
,
Nasrabadi
,
H.
, and
Gildin
,
E.
,
2017
, “
Lattice Boltzmann Simulation of Apparent Permeability for Gas Flow Nanochannels
,”
J. Porous Media
,
20
(
12
), pp.
1059
1070
.10.1615/JPorMedia.v20.i12.10
8.
Li
,
X.
,
Fan
,
J.
,
Yu
,
H.
,
Zhu
,
Y.
, and
Wu
,
H.
,
2018
, “
Lattice Boltzmann Method Simulations About Shale Gas Flow in Contracting Nano-Channels
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1210
1221
.10.1016/j.ijheatmasstransfer.2018.02.066
9.
Liu
,
Z.
,
Mu
,
Z.
, and
Wu
,
H.
,
2019
, “
Numerical Modeling of Slip Flow and Heat Transfer Over Microcylinders With Lattice Boltzmann Method
,”
ASME J. Heat Transfer
,
141
(
4
), p.
042401
.10.1115/1.4042770
10.
Lopez
,
P.
, and
Bayazitoglu
,
Y.
,
2013
, “
High Knudsen Number Thermal Flows With the D2Q13 Lattice Boltzmann Model
,”
Numer. Heat Transfer A Appl.
,
64
(
2
), pp.
93
106
.10.1080/10407782.2013.773794
11.
Guerrieri
,
D. C.
,
Cervone
,
A.
, and
Gill
,
E.
,
2016
, “
Analysis of Nonisothermal Rarefied Gas Flow in Diverging Microchannels for Low-Pressure Microresistojets
,”
ASME J. Heat Transfer
,
138
(
11
), p.
112403
.10.1115/1.4033955
12.
Ye
,
J. J.
,
Yang
,
J.
,
Tang
,
P.
,
Zheng
,
J. Y.
,
Li
,
W. Z.
,
Lam
,
C. K.
,
McKenna
,
M.
, and
Ma
,
Y. B.
,
2008
, “
Using Improved DSMC Method in Simulating for the Heat and Mass Transfer in Microchannels
,”
ASME
Paper No. IMECE2008-66915.10.1115/IMECE2008-66915
13.
Gavasane
,
A.
,
Agrawal
,
A.
,
Pradeep
,
A. M.
, and
Bhandarkar
,
U.
,
2017
, “
Simulation of a Temperature Drop for the Flow of Rarefied Gases in Microchannels
,”
Numer. Heat Transfer A
,
71
(
10
), pp.
1066
1079
.10.1080/10407782.2017.1330091
14.
Hadj-Nacer
,
M.
,
Maharjan
,
D.
,
Ho
,
M. T.
,
Stefanov
,
S. K.
,
Graur
,
I.
, and
Greiner
,
M.
,
2017
, “
Continuum and Kinetic Simulations of Heat Transfer Trough Rarefied Gas in Annular and Planar Geometries in the Slip Regime
,”
ASME J. Heat Transfer
,
139
(
4
), p.
042002
.10.1115/1.4035172
15.
Dorari
,
E.
,
Saffar-Avval
,
M.
, and
Mansoori
,
Z.
,
2015
, “
Numerical Simulation of Gas Flow and Heat Transfer in a Rough Microchannel Using the Lattice Boltzmann Method
,”
Phys. Rev. E
,
92
(
6
), p.
063034
.10.1103/PhysRevE.92.063034
16.
Tian
,
H. H.
,
Huang
,
W. Z.
,
Li
,
M.
, and
Wang
,
M. R.
,
2017
, “
Critical Size of Continuum Theory Applicability for Single-Phase Liquid Flow in Nanochannel
,”
J. Nanosci. Nanotechnol.
,
17
(
9
), pp.
6149
6158
.10.1166/jnn.2017.14486
17.
Zhou
,
W. J.
,
Yu
,
Z. Q.
,
Li
,
Z. Z.
,
Wei
,
J. J.
, and
Tao
,
W. Q.
,
2017
, “
Atomistic-Continuum Hybrid Simulations for Compressible Gas Flow in a Parallel Nanochannel
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2100
2106
.10.1016/j.ijheatmasstransfer.2017.01.042
18.
Liu
,
S.
,
Zhong
,
C. W.
, and
Bai
,
J.
,
2015
, “
Unified Gas-Kinetic Scheme for Microchannel and Nanochannel Flows
,”
Comput. Math. Appl.
,
69
(
1
), pp.
41
57
.10.1016/j.camwa.2014.11.009
19.
Xu
,
K.
, and
Huang
,
J. C.
,
2010
, “
A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows
,”
J. Comput. Phys.
,
229
(
20
), pp.
7747
7764
.10.1016/j.jcp.2010.06.032
20.
Liu
,
S.
,
Yu
,
P. B.
,
Xu
,
K.
, and
Zhong
,
C. W.
,
2014
, “
Unified Gas-Kinetic Scheme for Diatomic Molecular Simulations in All Flow Regimes
,”
J. Comput. Phys.
,
259
, pp.
96
113
.10.1016/j.jcp.2013.11.030
21.
Venugopal
,
V.
, and
Girimaji
,
S. S.
,
2015
, “
Unified Gas Kinetic Scheme and Direct Simulation Monte Carlo Computations of High-Speed Lid-Driven Microcavity Flows
,”
Commun. Comput. Phys.
,
17
(
5
), pp.
1127
1150
.10.4208/cicp.2014.m391
22.
Ragta
,
L. K.
,
Srinivasan
,
B.
, and
Sinha
,
S. S.
,
2017
, “
Efficient Simulation of Multidimensional Continuum and Non-Continuum Flows by a Parallelised Unified Gas Kinetic Scheme Solver
,”
Int. J. Comput. Fluid Dyn.
,
31
(
6–8
), pp.
292
309
.10.1080/10618562.2017.1350265
23.
Xu
,
K.
,
2015
,
Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes
,
World Scientific
,
Singapore
.
24.
Huang
,
J. C.
,
Xu
,
K.
, and
Yu
,
P. B.
,
2013
, “
A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows—III: Microflow Simulations
,”
Commun. Comput. Phys.
,
14
(
5
), pp.
1147
1173
.10.4208/cicp.190912.080213a
25.
Liu
,
H. T.
,
Cao
,
Y.
,
Chen
,
Q.
,
Kong
,
M. C.
, and
Zheng
,
L.
,
2018
, “
A Conserved Discrete Unified Gas Kinetic Scheme for Microchannel Gas Flows in All Flow Regimes
,”
Comput. Fluids
,
167
, pp.
313
323
.10.1016/j.compfluid.2018.03.023
26.
Maurer
,
J.
,
Tabeling
,
P.
,
Joseph
,
P.
, and
Willaime
,
H.
,
2003
, “
Second-Order Slip Laws in Microchannels for Helium and Nitrogen
,”
Phys. Fluids
,
15
(
9
), pp.
2613
2621
.10.1063/1.1599355
27.
Luo
,
L. Z.
,
Jian
,
Q. F.
,
Huang
,
B.
,
Huang
,
Z. P.
,
Zhao
,
J.
, and
Cao
,
S. Y.
,
2019
, “
Experimental Study on Temperature Characteristics of an Air-cooled Proton Exchange Membrane Fuel Cell Stack
,”
Renew. Energy
,
143
, pp.
167
178
.10.1016/j.renene.2019.05.085
28.
Yang
,
Y. H.
,
Morini
,
G. L.
, and
Brandner
,
J. J.
,
2014
, “
Experimental Analysis of the Influence of Wall Axial Conduction on Gas-to-Gas Micro Heat Exchanger Effectiveness
,”
Int. J. Heat Mass Transfer
,
69
, pp.
17
25
.10.1016/j.ijheatmasstransfer.2013.10.008
29.
Yu
,
P.
,
2013
, “
A Unified Gas Kinetic Scheme for All Knudsen Number Flows
,” Ph. D., thesis,
Hong Kong Univesity of Science and Technology
, Hong Kong, China.
30.
Chen
,
S. Z.
,
Guo
,
Z. L.
, and
Xu
,
K.
,
2016
, “Simplification of the Unified Gas Kinetic Scheme,”
Phys. Rev. E
,
94
, p.
023313
.10.1103/PhysRevE.94.023313
31.
Beskok
,
A.
,
1996
, “
Simulations and Models for Gas Flows in Microgeometries
,” Ph. D. thesis,
Princeton University
, Princeton, NJ.
32.
Gijare
,
H.
,
Bhagat
,
A.
, and
Dongari
,
N.
,
2019
, “
Effect of Knudsen Layer on the Heat Transfer in Hypersonic Rarefied Gas Flows
,”
Int. J. Therm. Sci.
,
142
, pp.
134
141
.10.1016/j.ijthermalsci.2019.04.016
33.
Zhao
,
X. P.
,
Li
,
Z. Y.
,
Liu
,
H.
, and
Tao
,
W. Q.
,
2015
, “
The Calculation of Thermal Conductivities by Three Dimensional Direct Simulation Monte Carlo Method
,”
J. Nanosci. Nanotechnol.
,
15
(
4
), pp.
3299
3304
.10.1166/jnn.2015.9679
You do not currently have access to this content.