Abstract

This article presents the numerical results of a new film cooling design that combines the backward injection hole with Barchan-dune-shaped shells (BH-BDS).The performance of this novel design in improving the film cooling effectiveness is compared to other configurations, forward injection hole (FH), backward injection hole (BH), and the configuration that combines the forward injection with Barchan-dune-shaped shells (FH-BDS). Three blowing ratios are considered in this article, M = 0.5, 1.0, and 1.5. The air coolant was injected through holes inclined at 35 and 155 deg for forward and backward cases, respectively. The lateral-averaged film cooling effectiveness and the distribution of adiabatic film cooling efficiency are studied using commercial software ansys-cfx. Three turbulence models, including the k–ω shear stress transport model, standard k–ε, and renormalization group theory (RNG) k–ε are examined in this investigation. The RNG k–ε model is adopted for the present simulation. The main result of this study reveals that the presence of upstream dune-shaped shells with backward hole yield a better film cooling effectiveness especially at higher blowing ratios (M ≥ 1). At M = 1.5, the FH-BDS and BH-BS cases provide an improvement in the area weighted average film cooling approximately about 24.79% and 10.56%, respectively. The BH-BDS design reduces the pressure loss as compared to BH.

References

1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.10.1016/S0065-2717(08)70020-0
2.
Goldstein
,
R. J.
,
Eckert
,
R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.10.1016/0017-9310(74)90007-6
3.
Haven
,
B. A.
,
Yamagata
,
D. K.
, and
Kurosaka
,
M.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME Paper No. 97-GT-045
.10.1115/97-GT-045
4.
Azzi
,
A.
, and
Jubran
,
B. A.
,
2006
, “
Numerical Modelling of Film Cooling From Converging Slot Hole
,”
Heat Mass Transfer
,
43
(
4
), pp.
381
388
.10.1007/s00231-006-0115-9
5.
Khorsi
,
A.
, and
Azzi
,
A.
,
2010
, “
Computation Film Cooling From Three Different Holes Geometries
,”
Mechanika
,
86
(6), pp.
1392
1207
.http://mechanika.ktu.lt/index.php/Mech/article/view/15971
6.
Li
,
H. M.
, and
Hassan
,
I.
,
2015
, “
The Effect Counter Rotating Vortex Pair Intensity on Film-Cooling Effectiveness
,”
Heat Transfer Eng.
,
36
(
16
), pp.
1360
1370
.10.1080/01457632.2015.1003715
7.
Kusterer
,
K.
,
Bohn
,
D.
, and
Sugimoto
,
T.
,
2007
, “
Influence of Blowing Ratio on the Double-Jet Ejection of Cooling Air
,”
ASME Paper No. GT–27301
.10.1115/GT2007-27301
8.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2009
, “
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021007
.10.1115/1.2950059
9.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2013
, “
Film Cooling From Circular and Elliptical Exit Shaped Holes With Sister Hole Influence
,”
ASME No. GT2013-95138
.10.1115/GT2013-95138
10.
Khajehhasani
,
S.
, and
Jubran
,
A. B.
,
2015
, “
Numerical Assessment of the Film Cooling Through Novel Sister-Shaped Single-Hole Schemes
,”
Numer. Heat Transfer
,
67
(
4
), pp.
414
435
.10.1080/10407782.2014.937257
11.
Marc
,
J. E.
, and
Jubran
,
A. B.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Field
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
.10.1007/s00231-009-0523-8
12.
Marc
,
J. E.
, and
Jubran
,
A. B.
,
2012
, “
Film Cooling From Short Holes With Sister Hole Influence
,”
ASME Paper No. GT2012-68081
.10.1115/GT2012-68081
13.
Li
,
X.
,
2010
, “
Numerical Simulation on Fluid Flow and Heat Transfer of Film Cooling With Backward Injection
,”
ASME Paper No. IHTC 14-22995
.10.1115/IHTC14-22995
14.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Inghan
,
D. B.
, and
Poukashanian
,
M.
,
2012
, “
Conjugate Heat Transfer Predictions of Effusion Cooling: The Influence of the Coolant Jet-Flow Direction on the Cooling Effectiveness
,”
ASME Paper No. GT2012-68517
.10.1115/GT2012-68517
15.
Park
,
S.
,
Jung
,
E. Y.
,
Kim
,
S. H.
,
Sohn
,
H.-S.
, and
Cho
,
H. H.
,
2016
, “
Enhancement of Film Cooling Effectiveness Using Backward Injection Holes
,”
Int. J. Therm. Sci.
,
110
, pp.
314
324
.10.1016/j.ijthermalsci.2016.08.001
16.
Singh
,
K.
,
Premachandran
,
B.
, and
Ravi
,
M. R.
,
2017
, “
Experimental and Numerical Studies on Film Cooling With Reverse/Backward Coolant Injection
,”
Int. J. Therm. Sci.
,
111
, pp.
390
408
.10.1016/j.ijthermalsci.2016.09.027
17.
Mishra
,
M. P.
,
Chandel
,
S.
,
Sahani
,
A. K.
, and
Negi
,
B.
,
2018
, “
Enhancement of Full Coverage Film Cooling Performance With Opposite Injection Holes
,”
Mater. Today Proc.
,
5
(
9
), pp.
19517
19528
.10.1016/j.matpr.2018.06.313
18.
Zhao
,
Z.
,
He
,
L.
,
Dai
,
S.
, and
Shao
,
S.
,
2019
, “
Computational Research on Film Cooling Performance of Different Shaped Holes With Backward and Forward Injection
,”
AIP Adv.
,
9
(
5
), p.
055009
.10.1063/1.5091573
19.
Na
,
S.
, and
Shih
,
T. I.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.10.1115/1.2709965
20.
Zaman
,
K.
,
Rigby
,
D.
, and
Heidmann
,
J.
,
2010
, “
Experimental Study of an Inclined Jet-in-Cross-Flow Interacting With a Vortex Generator
,”
AIAA Paper No. 2010-88
.10.2514/6.2010-88
21.
Shinn
,
A. F.
, and
Vanka
,
S. P.
,
2013
, “
Large Eddy Simulations of Film-Cooling Flows With a Micro-Ramp Vortex Generator
,”
ASME J. Turbomach.
,
135
(
1
), p.
011004
.10.1115/1.4006329
22.
An
,
B.
,
Liu
,
J.
,
Zhang
,
C.
, and
Zhou
,
S.
,
2013
, “
Film Cooling of Cylindrical Hole With a Downstream Short Crescent-Shaped Block
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031702
.10.1115/1.4007879
23.
Zhang
,
C.
, and
Wang
,
Z.
,
2018
, “
Effect of the Downstream Crescent-Shaped Block Height on the Flat-Plate Film Flow and Cooling Performance
,”
J. Appl. Mech. Tech. Phys.
,
59
(
5
), pp.
951
961
.10.1134/S0021894418050255
24.
Zhou
,
W.
, and
Hu
,
H.
,
2016
, “
Improvements of Film Cooling Effectiveness by Using Barchan Dune Shaped Ramps
,”
Int. J. Heat Mass Transfer
,
103
, pp.
443
456
.10.1016/j.ijheatmasstransfer.2016.07.066
25.
Zhou
,
W.
, and
Hu
,
H.
,
2017
, “
A Novel Sand-Dune-Inspired Design for Improved Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
110
, pp.
908
920
.10.1016/j.ijheatmasstransfer.2017.03.091
26.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
27.
Wilfert
,
G.
, and
Fottner
,
L.
,
1994
, “
The Aerodynamic Mixing Effect of Discrete Cooling Jets With Mainstream Flow on a Highly Loaded Turbine Blade
,”
ASME Paper No. 94-GT-235
.10.1115/94-GT-235
You do not currently have access to this content.