Abstract

Heat transfer analysis of liquid–liquid Taylor flow in previous studies almost never shows the effect of slug length on heat transfer. The homogenous or single-phase analysis is often the only method available to deal with flow of multicomponents. In this study, a new approach is developed to model the segmented liquid–liquid Taylor flow as two separated systems to present heat transfer enhancement for each component. The effect of internal circulation and boundary layer renewal within the two fluid components is clearly observed. An experimental setup was assembled using an open loop system at miniscale size in which liquid–liquid Taylor flow is heated under a constant wall temperature. Three silicone oils of 1, 3, and 5 cSt were segmented using distilled water at three volume fractions 0.25, 0.5, and 0.75. Finally, heat transfer data of the dimensionless mean wall heat flux shows good agreement with a predictive model proposed in an earlier work by the second author. The results show an impact of the fluid cell dimensions on the rate of heat transfer.

References

1.
Muzychka
,
Y. S.
, and
Ghobadi
,
M.
,
2016
, “
Measurement and Analysis of Laminar Heat Transfer Coefficients in Micro and Mini-Scale Ducts and Channels
,”
J. Heat Transfer Eng.
,
37
(
11
), pp.
938
946
.10.1080/01457632.2015.1098054
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
,
1981
, “
High-Performance Heat Sinking for VSLI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
3.
Fairbrother
,
F.
, and
Stubbs
,
A. E.
,
1935
, “
Studies in Electro-Endosmosis—Part VI: The Bubble-Tube Method of Measurement
,”
Chem. Eng. Sci.
,
141
(
6
), pp.
527
529
.
4.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection in Flow Over an Isothermal Flat Plate and in Developing and Fully Developed Flow in an Isothermal Tube
,”
ASME J. Heat Transfer
,
95
(
3
), pp.
416
419
.10.1115/1.3450078
5.
Taylor
,
G. I.
,
1961
, “
Deposition of a Viscous Fluid on the Wall of a Tube
,”
J. Fluid Mech.
,
10
(
02
), pp.
161
165
.10.1017/S0022112061000159
6.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
54
61
.10.1115/1.1643752
7.
Oliver
,
D. R.
, and
Young Hoon
,
A.
,
1968
, “
Two Phase Non-Newtonian Flow: Part 2 Heat Transfer
,”
Trans. Inst. Chem. Eng.
,
46
, pp.
116
122
.
8.
Horvath
,
C.
,
Solomon
,
B. A.
, and
Engasser
,
J. M.
,
1973
, “
Measurement of Radial Transport in Slug FLow Using En-Zyme Tubes
,”
Ind. Eng. Chem., Fund.
,
12
(
4
), pp.
431
439
.10.1021/i160048a006
9.
Vrentas
,
J. S.
,
Duda
,
J. L.
, and
Lehmkuhl
,
G. D.
,
1978
, “
Characteristics of Radial Transport in Solid-Liquid Slug Flow
,”
Ind. Eng. Chem., Fund
,
17
(
1
), pp.
39
45
.10.1021/i160065a008
10.
Maddox
,
D. E.
, and
Mudawar
,
I.
,
1989
, “
Single- and Two-Phase Convective Heat Transfer From Smooth and Enhanced Microelectronic Heat Sources in a Rectangular Channel
,”
ASME J. Heat Transfer
,
111
(
4
), pp.
1045
1052
.10.1115/1.3250766
11.
Muzychka
,
Y. S.
, and
Walsh
,
E.
,
2010
, “
Simple Models for Laminar Thermally Developing Slug Flow in Noncircular Ducts and Channels
,”
ASME J. Heat Transfer
,
132
(
11
), p.
111702
.10.1115/1.4002095
12.
Walsh
,
P.
,
Walsh
,
E.
, and
Muzychka
,
Y. S.
,
2010
, “
Heat Transfer Model for Gas-Liquid Slug Flows Under Constant Flux
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3193
3201
.10.1016/j.ijheatmasstransfer.2010.03.007
13.
Muzychka
,
Y. S.
,
Walsh
,
E.
, and
Walsh
,
P.
, April
2011
, “
Heat Transfer Enhancement Using Laminar Gas-Liquid Segmented Plug Flows
,”
ASME J. Heat Transfer
,
133
(
4
), p.
041902
.10.1115/1.4002807
14.
Betz
,
A. R.
, and
Attinger
,
D.
,
2010
, “
Can Segmented Flow Enhance Heat Transfer in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3683
3691
.10.1016/j.ijheatmasstransfer.2010.04.016
15.
Asthana
,
A.
,
Zinovik
,
I.
,
Weinmueller
,
C.
, and
Poulikakos
,
D.
,
2011
, “
Significant Nusselt Number Increase in Micro-Channels With a Segmented Flow of Two Immiscible Liquids: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1456
1464
.10.1016/j.ijheatmasstransfer.2010.11.048
16.
Adrugi
,
W. M.
,
Muzychka
,
Y. S.
, and
Pope
,
K.
,
2015
, “
Heat Transfer in Liquid –Liquid Taylor Flow in Mini-Scale Tube With Constant Wall Temperature
,”
ASME Paper No. ICNMM2015-48272
.
17.
Muzychka
,
Y. S.
,
2014
, “
Laminar Heat Transfer for Gas-Liquid Segmented Flows in Circular and Non-Circular Ducts With Constant Wall Temperature
,”
ASME Paper No. ICNMM2019-4216
. 10.1115/ICNMM2019-4216
18.
Adrugi
,
W.
,
Muzychka
,
Y. S.
, and
Pope
,
K.
,
2015
, “
Heat Transfer in Liquid-Liquid Taylor Flow in Mini-Scale Curved Tubing for Constant Wall Temperature
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020909
.10.1115/1.4036405
19.
Giolla
,
M. M.
,
Eain
,
A.
,
Vanessa
,
E.
, and
Punch
,
J.
,
2015
, “
Local Nusselt Number Enhancements in Liquid–Liquid Taylor Flows
,”
Int. J. Heat Mass Transfer
,
80
, pp.
85
97
.10.1016/j.ijheatmasstransfer.2014.09.009
20.
Alrbee
,
K.
,
Muzychka
,
Y. S.
, and
Duan
,
X.
,
2019
, “
An Approximate Method of Analysis for Laminar Heat Transfer in Liquid-liquid Taylor Flows in Mini Scale Tubing
,”
ASME Paper No. ICNMM2019-4217
.10.1115/ICNMM2019-4217
21.
Dai
,
Z.
,
Guo
,
Z.
,
David
,
F.
, and
Brian
,
S.
,
2015
, “ “
Taylor Flow Heat Transfer in Micro channels-Unification of Liquid–Liquid and Gas–Liquid Results
,”
Chem. Eng. Sci.
,
138
, pp.
140
152
.10.1016/j.ces.2015.08.012
22.
Alrbee
,
K.
,
Muzychka
,
Y. S.
, and
Duan
,
X.
,
2018
, “
Heat Transfer Enhancement in Laminar Graetz and Taylor Flows Using Nanofluids
,”
ASME Paper No. ICNMM2018-7756
. 10.1115/ICNMM2018-7756
23.
Haase
,
S.
,
2017
, “
Characterisation of Gas-Liquid Two-Phase Flow in Mini-Channels With co-Flowing Fluid Injection Inside the Channel—Part II: Gas Bubble and Liquid Slug Lengths, Film Thickness, and Void Fraction Within Taylor Flow
,”
Int. J. Multiphase Flow
,
88
, pp.
251
269
.10.1016/j.ijmultiphaseflow.2016.09.002
24.
Howard
,
A.
, and
Walsh
,
P. A.
,
2014
, “
Heat Transfer Characteristics of Liquid-Gas Taylor Flows Incorporating Microencapsulated Phase Change Materials
,”
J. Phys.: Conf. Ser.
,
525
, p.
012022
.10.1088/1742-6596/525/1/012022
25.
Matsuoka
,
A.
,
Noishiki
,
K.
, and
Mae
,
K.
,
2016
, “
Experimental Study of the Contribution of Liquid Film for Liquid-Liquid Taylor Flow Mass Transfer in a Microchannel
,”
Chem. Eng. Sci.
,
155
, pp.
306
313
.10.1016/j.ces.2016.08.021
26.
Asadolahi
,
A. N.
,
Gupta
,
R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2011
, “
CFD Approaches for the Simulation of Hydrodynamics and Heat Transfer in Taylor Flow
,”
Chem. Eng. Sci.
,
66
(
22
), pp.
5575
5584
.10.1016/j.ces.2011.07.047
27.
Abiev
,
R. S.
, and
Lavretsov
,
I. V.
,
2012
, “
Intensification of Mass Transfer From Liquid to Capillary Wall by Taylor Vortices in Mini Channels, Bubble Velocity and Pressure Drop
,”
Chem. Eng. Sci.
,
74
, pp.
59
68
.10.1016/j.ces.2012.02.024
28.
Abiev
,
R. S.
,
Butler
,
C.
,
Cid
,
E.
,
Lalanne
,
B.
, and
Billet
,
A. M.
,
2019
, “
Mass Transfer Characteristics and Concentration Field Evolution for Gas-Liquid Taylor Flow in Milli Channels
,”
Chem Eng. Sci
,
207
, pp.
1331
1340
.10.1016/j.ces.2019.07.046
29.
Eain
,
M. G.
,
Egan
,
V.
, and
Punch
,
J.
,
2013
, “
Film Thickness Measurements in Liquid-Liquid Slug Flow Regimes
,”
Int. J. Heat Fluid Flow
,
44
, pp.
515
523
.10.1016/j.ijheatfluidflow.2013.08.009
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME J. Mech. Eng.
,
75
(
1
), pp.
3
8
.
31.
Shcherbakov
,
M. V.
, and
Brebels
,
A.
,
2013
, “
A Survey of Forecast Error Measures
,”
World Appl. Sci. J.
,
24
, pp.
171
176
.
32.
Narayanan
,
C.
, and
Lakehal
,
D.
,
2008
, “
Two-Phase Convective Heat Transfer in Miniature Pipes Under Normal and Microgravity Conditions
,”
ASME J. Heat Transfer
,
130
(
7
), p.
074502
.10.1115/1.2909076
33.
Svetlov
,
S. D.
, and
Abiev
,
R. S.
,
2018
, “
Formation Mechanisms and Lengths of the Bubbles and Liquid Slugs in a Coaxial-Spherical Micro Mixer in Taylor Flow Regime
,”
Chem. Eng. J.
,
354
, pp.
269
284
.10.1016/j.cej.2018.07.213
34.
Wu
,
Z.
,
Cao
,
Z.
, and
Sundén
,
B.
,
2017
, “
Liquid-Liquid Flow Patterns and Slug Hydrodynamics in Square Microchannels of Cross-Shaped Junctions
,”
Chem. Eng. Sci.
,
174
, pp.
56
66
.10.1016/j.ces.2017.08.032
35.
Maxime
,
C.
,
Eyangelia
,
R.
, and
Panagiota
,
A.
,
2015
, “
Studies of Plug Formation in Microchannel Liquid–Liquid Flows Using Advanced Particle Image Velocimetry Techniques
,”
Exp. Therm. Fluid Sci.
,
69
, pp.
99
110
. 10.1016/j.expthermflusci.2015.07.022
You do not currently have access to this content.