Abstract

Instantaneous temperature measurements at the interface between a solid wall and a thin, unsteady liquid film are performed using thermoreflectance, a nonintrusive optical technique with high temporal resolution. A laser beam is directed at a wall–liquid interface, and the intensity of the light reflected at that interface is measured by a photodiode. The intensity of the reflected light varies with the index of refraction of the liquid at the wall. The index of refraction is a function of temperature, which enables the instantaneous measurement of the wall temperature. In the presence of thin liquid films, reflections from the liquid–vapor interface at the free surface of the film generate noise in the measurements. We demonstrate that orienting the laser beam at a large incident angle, close to total internal reflection, minimizes noise from the liquid–vapor interface while increasing the sensitivity of the measurement. The thermoreflectance technique is validated in an unsteady two-phase annular flow. Measurements of temperature fluctuations less than 1 K in amplitude are achieved, with an uncertainty of 0.1 K.

References

1.
Hewitt
,
G. F.
, and
Hall-Taylor
,
N. S.
,
1970
,
Annular Two-Phase Flow
,
Pergamon Press
,
Oxford, UK
.
2.
Cokmez-Tuzla
,
A. F.
,
Tuzla
,
K.
, and
Chen
,
J. C.
,
1993
, “
Experimental Assessment of Liquid-Wall Contacts in Post-CHF Convective Boiling
,”
Nucl. Eng. Des.
,
139
(
1
), pp.
97
103
.10.1016/0029-5493(93)90264-A
3.
Bigham
,
S.
, and
Moghaddam
,
S.
,
2015
, “
Microscale Study of Mechanisms of Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
88
, pp.
111
121
.10.1016/j.ijheatmasstransfer.2015.04.034
4.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L-W.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4185
4192
.10.1016/j.ijheatmasstransfer.2010.05.041
5.
Kim
,
T. H.
,
Kommer
,
E.
,
Dessiatoun
,
S.
, and
Kim
,
J.
,
2012
, “
Measurement of Two-Phase Flow and Heat Transfer Parameters Using Infrared Thermometry
,”
Int. J. Multiphase Flow
,
40
, pp.
56
67
.10.1016/j.ijmultiphaseflow.2011.11.012
6.
Su
,
G.-Y.
,
Bucci
,
M.
,
McKrell
,
T.
, and
Buongiorno
,
J.
,
2016
, “
Transient Boiling of Water Under Exponentially Escalating Heat Inputs—Part II: Flow Boiling
,”
Int. J. Heat Mass Transfer
,
96
, pp.
685
698
.10.1016/j.ijheatmasstransfer.2016.01.031
7.
Fan
,
C.
, and
Longtin
,
J.
,
2000
, “
Laser-Based Measurement of Liquid Temperature or Concentration at a Solid–Liquid Interface
,”
Exp. Thermal Fluid Sci.
,
23
(
1–2
), pp.
1
9
.10.1016/S0894-1777(00)00019-4
8.
Lee
,
A.
, and
Norris
,
P.
,
1997
, “
A New Optical Method for Measuring Surface Temperature at Large Incident Probe Angles
,”
Rev. Sci. Instrum.
,
68
(
2
), pp.
1307
1311
.10.1063/1.1147889
9.
Chen
,
Q.
,
Li
,
Y.
, and
Longtin
,
J.
,
2003
, “
Real-Time Laser-Based Measurement of Interface Temperature During Droplet Impingement on a Cold Surface
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
879
888
.10.1016/S0017-9310(02)00298-3
10.
Bhardwaj
,
R.
,
Longtin
,
J. P.
, and
Attinger
,
D.
,
2010
, “
Interfacial Temperature Measurements, High-Speed Visualization and Finite-Element Simulations of Droplet Impact and Evaporation on a Solid Surface
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3733
3744
.10.1016/j.ijheatmasstransfer.2010.04.024
11.
Shedd
,
T. A.
, and
Anderson
,
B. W.
,
2005
, “
An Automated Non-Contact Wall Temperature Measurement Using Thermoreflectance
,”
Meas. Sci. Technol.
,
16
(
12
), pp.
2483
2488
.10.1088/0957-0233/16/12/012
12.
Bashkatov
,
A. N.
, and
Genina
,
E. A.
,
2003
, “
Water Refractive Index in Dependence on Temperature and Wavelength: A Simple Approximation
,”
Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV
, Saratov, Russian Federation, pp.
393
395
.
13.
Schmidt
,
J. W.
,
Carrillo-Nava
,
E.
, and
Moldover
,
M. R.
,
1996
, “
Partially Halogenated Hydrocarbons CHFCl-CF3, CF3-CH3, CF3-CHF-CHF2, CF3-CH2-CF3, CHF2-CF2-CH2F, CF3-CH2-CHF2, CF3-0-CHF2: Critical Temperature, Refractive Indices, Surface Tension and Estimates of Liquid, Vapor and Critical Densities
,”
Fluid Phase Equilib.
,
122
(
1–2
), pp.
187
206
.10.1016/0378-3812(96)03044-0
14.
Schott Advanced Optics
,
2016
, “
Temperature Coefficient of the Refractive Index
,”
TIE-19
, pp.
1
10
.https://www.schott.com/d/advanced_optics/3794eded-edd2-461d-aec5-0a1d2dc9c523/1.1/schott_tie-19_temperature_coefficient_of_refractive_index_eng.pdf
15.
Rodarte
,
M. A.
,
2015
, “
Liquid Film and Droplet Behavior in Adiabatic and Diabatic Vertical Annular Flow
,” Ph.D. thesis,
University of Wisconsin-Madison
,
Madison, WI
.
16.
Dressler
,
K. M.
,
2018
, “
Experimental Determination of Heat Transfer Coefficients in Oscillatory Two-Phase Annular Flow
,” Ph.D. thesis,
University of Wisconsin-Madison
,
Madison, WI
.
17.
Semenyuk
,
Y. V.
,
Sechenyh
,
V. V.
,
Zhelezny
,
V. P.
, and
Skripov
,
P. V.
,
2008
, “
Thermophysical Properties of Compressor Oils for Refrigerating Plant
,”
J. Synth. Lubr.
,
25
(
2
), pp.
57
73
.10.1002/jsl.50
18.
Dominici
,
L.
,
Michelotti
,
F.
,
Brown
,
T. M.
,
Reale
,
A.
, and
Di Carlo
,
A.
,
2009
, “
Plasmon Polaritons in the Near Infrared on Fluorine Doped Tin Oxide Films
,”
Opt. Express
,
17
(
12
), pp.
10155
10167
.10.1364/OE.17.010155
19.
Lemmon
,
E. W.
, and Span, R.,
2006
, “
Short Fundamental Equations of State for 20 Industrial Fluids
,”
J. Chem. Eng. Data
, 51(3), pp.
785
850
.10.1021/je050186n
20.
Hurlburt
,
E.
, and
Newell
,
T.
,
1996
, “
Optical Measurement of Liquid Film Thickness and Wave Velocity in Liquid Film Flows
,”
Exp. Fluids
,
21
(
5
), pp.
357
362
.10.1007/BF00189056
21.
Shedd
,
T. A.
, and
Newell
,
T.
,
1998
, “
Automated Optical Liquid Film Thickness Measurement Method
,”
Rev. Sci. Instrum.
,
69
(
12
), pp.
4205
4213
.10.1063/1.1149232
You do not currently have access to this content.