Abstract

The dry-out easily occurs on high-aspect ratio microchannel sidewalls due to the decreasing of liquid film thickness. In this paper, the triangular microgrooves possessing the characteristic of evaporating meniscus were designed on the microchannel sidewalls. The heat sink consisted of 33 parallel microchannels, having a hydraulic diameter of 100 μm and an aspect ratio of 4. A platinum film heater and platinum resistance temperature detectors (RTDs) were integrated on the backside of the heat sink to realize uniform heating and precise temperature measurement, respectively. Flow boiling visualization experiments were carried out by high-speed camera in triangular groove-wall and plain-wall microchannels at mass fluxes of 148–490 kg/m2·s and inlet temperatures of 42 °C and 60 °C. The boiling curve, heat transfer coefficient (HTC), pressure drop, and two-phase flow boiling instability were systematically investigated to assess the flow boiling performances. Thin liquid film was observed in the triangular grooves during the dry-out process, compared to the dry-out in plain-wall microchannels. The oscillations of wall temperature, inlet temperature, and pressure drop were significantly suppressed in triangular groove-wall microchannels. Moreover, the earlier onset of nucleate boiling, improved heat flux, and HTC were realized in triangular groove-wall microchannels compared to plain-wall microchannels. Therefore, triangular groove design on the sidewalls is a promising solution to enhance boiling heat transfer and suppress flow boiling instabilities for high-aspect ratio microchannels.

References

1.
Ebadian
,
M. A.
, and
Lin
,
C. X.
,
2011
, “
A Review of High-Heat-Flux Heat Removal Technologies
,”
ASME J. Heat Transfer
,
133
(
11
), p.
110801
.10.1115/1.4004340
2.
Yu
,
X.
,
Woodcock
,
C.
,
Wang
,
Y.
,
Plawsky
,
J.
, and
Peles
,
Y.
,
2016
, “
A Comparative Study of Flow Boiling in a Microchannel With Piranha Pin Fins
,”
ASME J. Heat Transfer
,
138
(
11
), p.
111502
.10.1115/1.4033743
3.
Fu
,
B. R.
,
Lee
,
C. Y.
, and
Pan
,
C.
,
2013
, “
The Effect of Aspect Ratio on Flow Boiling Heat Transfer of HFE-7100 in a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
53
61
.10.1016/j.ijheatmasstransfer.2012.11.050
4.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
117
, pp.
319
330
.10.1016/j.ijheatmasstransfer.2017.10.015
5.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041002
.10.1115/1.4005300
6.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.10.1115/1.4005126
7.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
, and
Cummins
,
G.
,
2009
, “
Two-Phase Flow Instabilities in a Silicon Microchannels Heat Sink
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
854
867
.10.1016/j.ijheatfluidflow.2009.03.013
8.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.10.1115/1.4024354
9.
Koşar
,
A.
,
Kuo
,
C. J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.10.1115/1.2150837
10.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2267
2281
.10.1016/j.ijheatmasstransfer.2007.08.027
11.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling Heat Transfer on Micro Pin Fins Entrenched in a Microchannel
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041007
.10.1115/1.4000878
12.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2009
, “
Measurement and Prediction of Pressure Drop in a Two-Phase Micro-Pin-Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5173
5184
.10.1016/j.ijheatmasstransfer.2009.05.007
13.
Li
,
D.
,
Wu
,
G. S.
,
Wang
,
W.
,
Wang
,
Y. D.
,
Liu
,
D.
,
Zhang
,
D. C.
,
Chen
,
Y. F.
,
Peterson
,
G. P.
, and
Yang
,
R.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
.10.1021/nl300049f
14.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Cheng
,
P.
, and
Li
,
C.
,
2013
, “
Can Multiple Flow Boiling Regimes Be Reduced Into a Single One in Microchannels?
,”
Appl. Phys. Lett.
,
103
(
4
), p.
043122
.10.1063/1.4816594
15.
Lee
,
J. Y.
,
Kim
,
M. H.
,
Kaviany
,
M.
, and
Son
,
S. Y.
,
2011
, “
Bubble Nucleation in Microchannel Flow Boiling Using Single Artificial Cavity
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5139
5148
.10.1016/j.ijheatmasstransfer.2011.08.042
16.
Lin
,
P. H.
,
Fu
,
B. R.
, and
Pan
,
C.
,
2011
, “
Critical Heat Flux on Flow Boiling of Methanol–Water Mixtures in a Diverging Microchannel With Artificial Cavities
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3156
3166
.10.1016/j.ijheatmasstransfer.2011.04.016
17.
Kim
,
D. E.
,
Yu
,
D. I.
,
Jerng
,
D. W.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2015
, “
Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
173
196
.10.1016/j.expthermflusci.2015.03.023
18.
Kuo
,
C. J.
, and
Peles
,
Y.
,
2007
, “
Local Measurement of Flow Boiling in Structured Surface Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4513
4526
.10.1016/j.ijheatmasstransfer.2007.03.047
19.
Kuo
,
C. J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.10.1115/1.2908431
20.
Kuo
,
C. J.
, and
Peles
,
Y.
,
2009
, “
Flow Boiling of Coolant (HFE-7000) Inside Structured and Plain Wall Microchannels
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121011
.10.1115/1.3220674
21.
Sitar
,
A.
,
Sedmak
,
I.
, and
Golobic
,
I.
,
2012
, “
Boiling of Water and FC-72 in Microchannels Enhanced With Novel Features
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6446
6457
.10.1016/j.ijheatmasstransfer.2012.06.040
22.
Peng
,
X. F.
,
Hu
,
H. Y.
, and
Wang
,
B. X.
,
1998
, “
Flow Boiling Through V-Shape Microchannels
,”
Exp. Heat Transfer
,
11
(
1
), pp.
87
100
.10.1080/08916159808946555
23.
Sheu
,
T.-S.
,
Ding
,
P.-P.
,
Lo
,
I.-M.
, and
Chen
,
P.-H.
,
2000
, “
Effect of Surface Characteristics on Capillary Flow in Triangular Microgrooves
,”
Exp. Therm. Fluid Sci.
,
22
(
1–2
), pp.
103
110
.10.1016/S0894-1777(00)00016-9
24.
Zhang
,
L.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2005
, “
Phase Change Phenomena in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1572
1582
.10.1016/j.ijheatmasstransfer.2004.09.048
25.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.10.1115/1.2165208
26.
Li
,
Y.
,
Xia
,
G.
,
Jia
,
Y.
,
Cheng
,
Y.
, and
Wang
,
J.
,
2017
, “
Experimental Investigation of Flow Boiling Performance in Microchannels With and Without Triangular Cavities—A Comparative Study
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1511
1526
.10.1016/j.ijheatmasstransfer.2017.01.011
27.
Plawsky
,
J. L.
,
Fedorov
,
A. G.
,
Garimella
,
S. V.
,
Ma
,
H. B.
,
Maroo
,
S. C.
,
Chen
,
L.
, and
Nam
,
Y.
,
2014
, “
Nano and Microstructures for Thin-Film Evaporation—A Review
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
251
269
.10.1080/15567265.2013.878419
28.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling of Water in a Circular Staggered Micro-Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1349
1364
.10.1016/j.ijheatmasstransfer.2007.11.026
29.
Bigham
,
S.
, and
Moghaddam
,
S.
,
2015
, “
Microscale Study of Mechanisms of Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
88
, pp.
111
121
.10.1016/j.ijheatmasstransfer.2015.04.034
30.
Prajapati
,
Y. K.
,
Pathak
,
M.
, and
Kaleem Khan
,
M.
,
2015
, “
A Comparative Study of Flow Boiling Heat Transfer in Three Different Configurations of Microchannels
,”
Int. J. Heat Mass Transfer
,
85
, pp.
711
722
.10.1016/j.ijheatmasstransfer.2015.02.016
31.
Liu
,
D.
, and
Garimella
,
S. V.
,
2007
, “
Flow Boiling Heat Transfer in Microchannels
,”
ASME J. Heat Transfer
,
129
(
10
), pp.
1321
1332
.10.1115/1.2754944
32.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2008
, “
Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3724
3735
.10.1016/j.ijheatmasstransfer.2008.03.013
33.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
142
154
.10.1016/j.ijmultiphaseflow.2008.10.004
34.
Deng
,
D.
,
Xie
,
Y.
,
Huang
,
Q.
, and
Wan
,
W.
,
2017
, “
On the Flow Boiling Enhancement in Interconnected Reentrant Microchannels
,”
Int. J. Heat Mass Transfer
,
108
, pp.
453
467
.10.1016/j.ijheatmasstransfer.2016.12.030
You do not currently have access to this content.