This paper presents a methodology for the application of the weighted-sum-of-gray-gases (WSGG) model to systems where the medium is bounded by nongray surfaces. The method relies on the assumption that each gray gas absorption coefficient is randomly spread across the entire wavenumber spectrum. It follows that, in the spectral integration of the radiative transfer equation (RTE), the local emission term can be computed by the joint probability of emission from the subsections of the spectrum related to each gray gas coefficient and from each wall emissivity band. One advantage of the proposed methodology is that it allows the use without any modification of WSGG correlations that are available in the literature. The study presents a few test cases considering a one-dimensional (1D), nonuniform medium slab composed of H2O and CO2, bounded by nongray surfaces. The accuracy of the methodology is assessed by direct comparison with line-by-line (LBL) calculations.

References

1.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2011
, “
Global Spectral Methods in Gas Radiation: The Exact Limit of the SLW Model and Its Relationship to the ADF and FSK Methods
,”
ASME J. Heat Transfer
,
133
(
4
), p.
042701
.
2.
Cai
,
J.
, and
Modest
,
M. F.
,
2014
, “
Improved Full-Spectrum k-Distribution Implementation for Inhomogeneous Media Using a Narrow-Band Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
141
, pp.
65
72
.
3.
Chu
,
H.
,
Liu
,
F.
, and
Consalvi
,
J.-L.
,
2014
, “
Relationship Between the Spectral Line Based Weighted-Sum-of-Gray-Gases Model and the Full Spectrum k-Distribution Model
,”
J. Quant. Spectrosc. Radiat. Transfer
,
143
, pp.
111
120
.
4.
Pearson
,
J. T.
,
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
Ma
,
J.
,
2014
, “
Efficient Representation of the Absorption Line Blackbody Distribution Function for H2O, CO2, and CO at Variable Temperature, Mole Fraction, and Total Pressure
,”
J. Quant. Spectrosc. Radiat. Transfer
,
138
, pp.
82
96
.
5.
Pearson
,
J. T.
,
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
Ma
,
J.
,
2014
, “
Effect of Total Pressure on the Absorption Line Blackbody Distribution Function and Radiative Transfer in H2O, CO2, and CO
,”
J. Quant. Spectrosc. Radiat. Transfer
,
143
, pp.
100
110
.
6.
Tencer
,
J.
, and
Howell
,
J. R.
,
2014
, “
Quantification of Model-Form Uncertainty in the Correlated-k Distribution Method for Radiation Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
143
, pp.
73
82
.
7.
Solovjov
,
V. P.
,
Andre
,
F.
,
Lemonnier
,
D.
, and
Webb
,
B. W.
,
2016
, “
The Generalized SLW Model
,”
J. Phys.: Conf. Ser.
,
676
, p. 012022.
8.
Chu
,
H.
,
Gu
,
M.
,
Consalvi
,
J. L.
,
Liu
,
F.
, and
Zhou
,
H.
,
2016
, “
Effects of Total Pressure on Non-Grey Gas Radiation Transfer in Oxy-Fuel Combustion Using the LBL, SNB, SNBCK, WSGG, and FSCK Methods
,”
J. Quant. Spectrosc. Radiat. Transfer
,
172
, pp.
24
35
.
9.
Kez
,
V.
,
Liu
,
F.
,
Consalvi
,
J. L.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2016
, “
A Comprehensive Evaluation of Different Radiation Models in a Gas Turbine Combustor Under Conditions of Oxy-Fuel Combustion With Dry Recycle
,”
J. Quant. Spectrosc. Radiat. Transfer
,
172
, pp.
121
133
.
10.
Solovjov
,
V. P.
,
Andre
,
F.
,
Lemonnier
,
D.
, and
Webb
,
B. W.
,
2017
, “
The Rank Correlated SLW Model of Gas Radiation in Non-Uniform Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
197
, pp.
26
44
.
11.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1994
, “
k-Distributions and Weighted-Sum-of-Gray-Gases—A Hybrid Model
,”
Heat Transfer
,
2
, pp.
19
24
.
12.
Solovjov
,
V. P.
,
Lemonnier
,
D.
, and
Webb
,
B. W.
,
2013
, “
Efficient Cumulative Wavenumber Model of Radiative Transfer in Gaseous Media Bounded by Non-Gray Walls
,”
J. Quant. Spectrosc. Radiat. Transfer
,
128
, pp.
2
9
.
13.
Johansson
,
R.
,
Leckner
,
B.
,
Andersson
,
K.
, and
Johnsson
,
F.
,
2011
, “
Account for Variations in the H2O to CO2 Molar Ratio When Modelling Gaseous Radiative Heat Transfer With the Weighted-Sum-of-Grey-Gases Model
,”
Combust. Flame
,
158
(
5
), pp.
893
901
.
14.
Rehfeldt
,
S.
,
Kuhr
,
C.
,
Ehmann
,
M.
, and
Bergins
,
C.
,
2011
, “
Modeling of Radiative Properties of an Oxyfuel Atmosphere With a Weighted Sum of Gray Gases for Variable Carbon Dioxide and Water Vapor Concentrations
,”
Energy Procedia
,
4
, pp.
980
987
.
15.
Kangwanpongpan
,
T.
,
França
,
F. H. R.
,
da Silva
,
R. C.
,
Schneider
,
P. S.
, and
Krautz
,
H. J.
,
2012
, “
New Correlations for the Weighted-Sum-of-Gray-Gases Model in Oxy-Fuel Conditions Based on HITEMP 2010 Database
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7419
7433
.
16.
Dorigon
,
L. J.
,
Duciak
,
G.
,
Brittes
,
R.
,
Cassol
,
F.
,
Galarça
,
M.
, and
França
,
F. H. R.
,
2013
, “
WSGG Correlations Based on HITEMP2010 for Computation of Thermal Radiation in Non-Isothermal, Non-Homogeneous H2O/CO2 Mixtures
,”
Int. J. Heat Mass Transfer
,
64
, pp.
863
873
.
17.
Bordbar
,
M. H.
,
Węcel
,
G.
, and
Hyppänen
,
T.
,
2014
, “
A Line by Line Based Weighted Sum of Gray Gases Model or Inhomogeneous CO2-H2O Mixture in Oxy-Fired Combustion
,”
Combust. Flame
,
161
(
9
), pp.
2435
2445
.
18.
Cassol
,
F.
,
Brittes
,
R.
,
França
,
F. H. R.
, and
Ezekoye
,
O. A.
,
2014
, “
Application of the Weighted-Sum-of-Gray-Gases Model for Media Composed of Arbitrary Concentrations of H2O, CO2 and Soot
,”
Int. J. Heat Mass Transfer
,
79
, pp.
796
806
.
19.
Brittes
,
R.
,
Centeno
,
F. R.
, and
França
,
F. H. R.
,
2017
, “
WSGG Model Correlations to Compute Non-Gray Radiation From Carbon Monoxide in Combustion Applications
,”
ASME J. Heat Transfer
,
139
(
4
), p.
041202
.
20.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic Press
,
New York
.
21.
Howell
,
J. R.
,
Mengüç
,
M. P.
, and
Siegel
,
R.
,
2016
,
Thermal Radiation Heat Transfer
, 6th ed.,
CRC Press
,
Boca Raton, FL
.
22.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
15
), pp.
2139
2150
.
You do not currently have access to this content.