The computational fluid dynamics (CFD) modeling of boiling phenomena has remained a challenge due to numerical limitations for accurately simulating the two-phase flow and phase-change processes. In the present investigation, a CFD approach for such analysis is described using a three-dimensional (3D) volume of fluid (VOF) model coupled with a phase-change model accounting for the interfacial mass and energy transfer. This type of modeling allows the transient analysis of flow boiling mechanisms, while providing the ability to visualize in detail temperature, phase, and pressure distributions for microscale applications with affordable computational resources. Results for a plain microchannel are validated against benchmark correlations for heat transfer (HT) coefficients and pressure drop as a function of the heat flux and mass flux. Furthermore, the model is used for the assessment of two-phase cooling in microelectronics under a realistic scenario with nonuniform heat fluxes at localized regions of a silicon microchannel, relevant to the cooling layer of 3D integrated circuit (IC) architectures. Results indicate the strong effect of two-phase flow regime evolution and vapor accumulation on HT. The effects of reduced saturation pressure, subcooling, and flow arrangement are explored in order to provide insight about the underlying physics and cooling performance.

References

1.
Xu
,
J.
,
Liu
,
G.
,
Zhang
,
W.
,
Li
,
Q.
, and
Wang
,
B.
,
2009
, “
Seed Bubbles Stabilize Flow and Heat Transfer in Parallel Microchannels
,”
Int. J. Multiphase Flow
,
35
(
8
), pp.
773
790
.
2.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
,
13
(
13
), pp.
1
50
.
3.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels
,”
Int. J. Heat Fluid Flow
,
25
(2), pp.
128
139
.
4.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2008
, “
Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
3
), pp.
187
227
.
5.
Ghiaasiaan
,
S. M.
,
2008
,
Two-Phase Flow, Boiling and Condensation: In Conventional and Miniature Systems
,
Cambridge University Press
,
New York
.
6.
Kandlikar
,
S. G.
,
2010
, “
Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1073
1085
.
7.
Aniszewski
,
W.
,
Menard
,
T.
, and
Marek
,
M.
,
2014
, “
Volume of Fluid (VOF) Type Advection Methods in Two-Phase Flow: A Comparative Study
,”
Comput. Fluids
,
97
, pp.
52
73
.
8.
Hua
,
H.
,
Shin
,
J.
, and
Kim
,
J.
,
2014
, “
Level Set, Phase-Field, and Immersed Boundary Methods for Two-Phase Fluid Flows
,”
ASME J. Fluids Eng.
,
136
(2), p.
021301
.
9.
Sun
,
D. L.
, and
Tao
,
W. Q.
,
2010
, “
A Coupled Volume-of-Fluid and Level Set (VOSET) Method for Computing Incompressible Two Phase Flows
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
645
655
.
10.
Wu
,
H. L.
,
Peng
,
X. F.
,
Ye
,
P.
, and
Gong
,
Y. E.
,
2007
, “
Simulation of Refrigerant Flow Boiling in Serpentine Tubes
,”
Int. J. Heat Mass Transfer
,
50
(5–6), pp.
1186
1195
.
11.
Yang
,
Z.
,
Peng
,
X. F.
, and
Ye
,
P.
,
2008
, “
Numerical and Experimental Investigations of Two-Phase Flow During Boiling in a Coiled Tube
,”
Int. J. Heat Mass Transfer
,
51
(5–6), pp.
1003
1016
.
12.
Lee
,
W. H.
,
1980
, “
A Pressure Iteration Scheme for Two-Phase Flow Modelling
,”
Multiphase Transport Fundamentals, Reactor Safety Applications
,
T. M.
Verizoglu
, ed.,
Hemisphere
,
Washington, DC
.
13.
De Schepper
,
S. C. K.
,
Heyderickx
,
G. J.
, and
Marin
,
G. B.
,
2009
, “
Modeling of the Evaporation of a Hydrocarbon Feedstock in the Convection Section of a Steam Cracker
,”
Comput. Chem. Eng.
,
33
(
1
), pp.
122
132
.
14.
Fang
,
C.
,
Milnes
,
D.
,
Rogacs
,
A.
, and
Goodson
,
K.
,
2010
, “
Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel
,”
Front. Heat Mass Transfer
,
1
(1), p.
013002
.
15.
Zhuan
,
R.
, and
Wang
,
W.
,
2011
, “
Simulation of Subcooled Flow Boiling in a Micro-Channel
,”
Int. J. Refrig.
,
34
(
3
), pp.
781
795
.
16.
Plesset
,
M. S.
, and
Zwick
,
S. A.
,
1954
, “
The Growth of Vapour Bubble in Superheated Liquid
,”
J. Appl. Phys.
,
25
(
4
), pp.
493
500
.
17.
Zong
,
L.
,
Sun
,
D. G.
,
Xu
,
J.
, and
Wang
,
X.
,
2013
, “
Numerical Study of Seed Bubble-Triggered Evaporation Heat Transfer in a Single Microtube
,”
Microfluid. Nanofluid.
,
16
(
1
), pp.
347
360
.https://doi.org/10.1007/s10404-013-1205-x
18.
Sun
,
D. G.
,
Xu
,
J.
, and
Chen
,
Q.
,
2014
, “
Modeling of the Evaporation and Condensation Phase-Change Problems With FLUENT
,”
Numer. Heat Transfer, Part B
,
66
(
4
), pp.
326
342
.
19.
Rahman
,
A.
, and
Reif
,
R.
,
2000
, “
System-Level Performance Evaluation of Three-Dimensional Integrated Circuits
,”
IEEE Trans. Very Large Scale Integr. Syst.
,
8
(
6
), pp.
671
678
.
20.
Kandlikar
,
S. G.
,
2014
, “
Review and Projections of Integrated Cooling Systems for Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
024001
.
21.
Koo
,
J.-M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
49
58
.
22.
Alfieri
,
F.
,
Tiwari
,
M. K.
,
Zinovik
,
I.
,
Poulikakos
,
D.
,
Brunschwiler
,
T.
, and
Michel
,
B.
,
2010
, “
3D Integrated Water Cooling of a Composite Multilayer Stack of Chips
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121402
.
23.
Zhang
,
Y.
,
Dembla
,
A.
,
Joshi
,
Y.
, and
Bakir
,
M. S.
,
2012
, “
3D Stacked Microfluidic Cooling for High-Performance 3D ICs
,”
62nd IEEE Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 29–June 1, pp.
1644
1650
.
24.
Kim
,
Y.-J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y.-J.
, and
Lim
,
S.-K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Non-Uniform Heat Flux
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041009
.
25.
Wan
,
Z.
,
Xiao
,
H.
,
Joshi
,
Y. K.
, and
Yalamanchilli
,
S.
,
2014
, “
Co-Design of Multicore Architectures and Microfluidic Cooling for 3D Stacked ICs
,”
Microelectron. J.
,
45
(
12
), pp.
1814
1821
.
26.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
27.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
28.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
, and
M. J.
Baines
, eds.,
Academic Press
,
New York
, pp.
273
285
.
29.
Ubbink
,
O.
,
1997
, “
Numerical Prediction of Two Fluid Systems With Sharp Interfaces
,”
Ph.D. thesis
, Imperial College of Science, Technology and Medicine, London.http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388372
30.
Maa
,
J. R.
,
1967
, “
Evaporation Coefficient of Liquids
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
504
518
.
31.
Cammenga
,
H. K.
,
Schulze
,
F. W.
, and
Theuerl
,
W.
,
1977
, “
Vapor Pressure and Evaporation Coefficient of Water
,”
J. Chem. Eng. Data
,
22
(
2
), pp.
131
134
.
32.
Lorenzini
,
D.
, and
Joshi
,
Y.
,
2016
, “
CFD Study of Flow Boling in Silicon Microgaps With Staggered Pin Fins for the 3D-stacking of ICs
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 31–June 3, pp.
766
773
.
33.
Magnini
,
M.
, and
Thome
,
J. R.
,
2016
, “
Computational Study of Saturated Flow Boiling Within a Microchannel in the Slug Flow Regime
,”
ASME J. Heat Transfer
,
138
(2), p.
021502
.
34.
Gorle
,
C.
,
Lee
,
H.
,
Houshmand
,
F.
,
Asheghi
,
M.
,
Goodson
,
K.
, and
Parida
,
P. R.
,
2015
, “
Validation Study for VOF Simulations of Boiling in a Microchannel
,”
ASME
Paper No. IPACK2015-48129.
35.
IAPWS
,
1997
, “
IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,” International Association for the Properties of Water and Steam, Lucerne, Switzerland, pp.
33
35
.
36.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Silicon and Germanium From 3 K to the Melting Point
,”
Phys. Rev.
,
134
(
4
A), pp.
A1058
A1059
.
37.
Healy
,
M. B.
, and
Lim
,
S. K.
,
2009
, “
A Study of Stacking Limit and Scaling in 3D ICs: An Interconnect Perspective
,”
IEEE Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 26–29, pp.
1213
1220
.
38.
Lorenzini
,
D.
, and
Joshi
,
Y. K.
,
2015
, “
Effect of Surface Wettability on Flow Boiling in a Microchannel
,”
International Symposium on Advances in Computational Heat Transfer
(
CHT
), Piscataway, NJ, May 25–29, pp.
176
193
.
39.
Choi
,
C.
,
Shin
,
J. S.
,
Yu
,
D. I.
, and
Kim
,
M. H.
,
2011
, “
Flow Boiling Behaviors in Hydrophilic and Hydrophobic Microchannels
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
816
824
.
40.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
A Composite Heat Transfer Correlation for Saturated Flow Boling in Small Channels
,”
Int. J. Heat Mass Transfer
,
52
(7–8), pp.
2110
2118
.
41.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Res.
,
5
(3), pp.
322
329
.
42.
Muller-Steinhagen
,
H.
, and
Heck
,
K.
,
1986
, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Prog.
,
20
(
6
), pp.
297
308
.
43.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2010
, “
A Comprehensive Flow Regime Map for Microchannel Flow Boiling With Quantitative Transition Criteria
,”
Int. J. Heat Mass Transfer
,
53
(13–14), pp.
2694
2702
.
You do not currently have access to this content.