This study investigates the effects of sinusoidal pulsations externally imposed to an oblique round jet. The effectiveness of film coverage of an adiabatic wall onset for a thermally uniform bulk flow is presented in the perspective of gas turbine film cooling. For the injectant fluid, both the temperature and the mass flow rate are controlled prior to entrance to the periodic forcing system using a loudspeaker drive. The characteristic film cooling parameters including the blowing ratios and the temperature ratio are maintained at M=ρiUi/ρU= 0.65, 1, and 1.25, and Ti/T=2 respectively. The injection fluid is pulsated to a nondimensionalized frequency of St=fd/U= 0, 0.2, 0.3, and 0.5. In the present investigation, the impact of injectant film modulation is figured out by analyzing the velocity fields measured by a system of time-resolved particle image velocimetry (TR-PIV), as well as analyzing the adiabatic wall temperature and the convective heat transfer coefficient measured by a system of infrared thermography. The overall film-cooling effectiveness is revealed by the time-averaged analysis, in which altered time-averaged jet trajectories and wake behavior are focused. It is observed that the pulsations tend to result in lower effectiveness when the flow remained attached to the wall in steady blowing case. In steady blowing cases with jet liftoff, such as for M= 1.25, rendering low-frequency pulsation helps in increasing film-cooling effectiveness due to the discharge of lower mass flow rate coolant during the significant time interval of the respective pulse cycle.

References

1.
Abhari
,
R. S.
,
1996
, “
Impact of Rotor–Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
118
(
1
), pp.
123
133
.
2.
Bons
,
J. P.
,
Rivir
,
J. B.
,
Mac Arthur
,
C. D.
, and
Pestian
,
D. J.
,
1995
, “
The Effect of Unsteadiness on Film Cooling Effectiveness
,” Wright Laboratory, Report No. WL-TR-96-2096.
3.
Ligrani
,
P. M.
,
Gong
,
R.
, and
Cuthrell
,
J. M.
,
1996a
, “
Bulk Flow Pulsations and Film Cooling-I: Injectant Behavior
,”
Int. J. Heat Mass Transfer
,
39
(
11
), pp.
2271
2282
.
4.
Ligrani
,
P. M.
,
Gong
,
R.
, and
Cuthrell
,
J. M.
,
1996b
, “
Bulk Flow Pulsations and Film Cooling-II: Flow Structure and Film Effectiveness
,”
Int. J. Heat Mass Transfer
,
39
(
11
), pp.
2283
2292
.
5.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
,
1997
, “
Effect of Bulk Flow Pulsations on Film Cooled Boundary Layer Structure
,”
ASME J. Fluid Eng.
,
119
(
1
), pp.
56
66
.
6.
Sohn
,
D. K.
, and
Lee
,
J. S.
,
1997
, “
The Effect of Bulk Flow Pulsations on Film Cooling From Two Rows of Holes
,”
ASME Paper No. 97-GT-129
.
7.
Seo
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
,
1998
, “
The Effect of Injection Hole Length on Film Cooling With Bulk Flow Pulsations
,”
Int. J. Heat Mass Transfer
,
41
(
22
), pp.
3515
3528
.
8.
Lee
,
J. S.
, and
Jung
,
I. S.
,
2002
, “
Effect of Bulk Flow Pulsations on Film Cooling With Compound Angle Holes
,”
Int. J. Heat Mass Transfer
,
45
(
1
), pp.
113
123
.
9.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2007a
, “
Effect of Jet Pulsing on Film Cooling-Part 1: Effectiveness and Flow-Field Temperature Results
,”
ASME J. Turbomach.
,
129
(
2
), pp.
232
246
.
10.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2006
, “
Effect of Jet Pulsation and Duty Cycle on Film Cooling From a Single Jet on a Leading Edge Model
,”
ASME J. Turbomach.
,
128
(
3
), pp.
564
571
.
11.
Ou
,
S.
, and
Rivir
,
R. B.
, “
Shaped-Hole Film Cooling With Pulsed Secondary Flow
,”
ASME
Paper No. GT2006-90272.
12.
Sultan
,
Q.
,
Lalizel
,
G.
,
Fénot
,
M.
, and
Dorignac
,
E.
,
2011
, “
Experimental Time-Resolved Study of the Interaction Between a Pulsating Injectant and a Steady Cross-Flow: Aerodynamics of Film Cooling
,”
Exp. Fluids
,
51
(
5
), pp.
1245
1259
.
13.
Lalizel
,
G.
,
Sultan
,
Q.
,
Fénot
,
M.
, and
Dorignac
,
E.
,
2012
, “
Experimental Convective Heat Transfer Characterization of Pulsating Jet in Cross Flow: Influence of Strouhal Number Excitation on Film Cooling Effectiveness
,”
6th European Thermal Sciences Conference
, Eurotherm 2012, Poitiers, France.
14.
Muldoon
,
F.
, and
Acharya
,
S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3118
3127
.
15.
Kartuzova
,
O.
,
Danila
,
D.
, and
Ibrahim
,
M.
,
2009
, “
Computational Simulation of Cylindrical Film Hole With Jet Pulsation on Flat Plates
,”
J. Propul. Power
,
25
(
6
), pp.
1249
1258
.
16.
Rutledge
,
J. L.
,
King
,
P. I.
, and
Rivir
,
R.
,
2009
, “
CFD Prediction of the Frequency Dependence of Pulsed Film Cooling Heat Flux on a Turbine Blade Leading Edge
,”
AIAA
Paper No. 2009-0680.
17.
Sultan
,
Q.
,
Lalizel
,
G.
, and
Dorignac
,
E.
,
2009
, “
Qualification of Wind Tunnel Flow Field Characteristics Prior to Advanced Film Cooling Experimentation
,”
Conference on Modeling Fluid Flow (CMFF’09)
, Budapest, Hungary, Sept. 9–12.
18.
Sultan
,
Q.
,
2011
, “
Caractérisation Expérimentale Aérothermique d'un jet Pulsé Débouchant dans un Écoulement Transversal: Influence du Nombre de Strouhal d'excitation sur le refroidissement de paroi par Film
,” Mémoire de diplôme d'thèse, École Nationale Supérieure de Mécanique et d'Aérotechnique (ENSMA), Poitiers, France.
19.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
20.
Moussa
,
Z. M.
,
Trischka
,
J. W.
, and
Eskinazi
,
S.
,
1977
, “
The Near Field in the Mixing of a Round Jet With a Cross-Stream
,”
J. Fluid Mech.
,
80
(01), pp.
49
80
.
21.
Andreopoulos
,
J.
,
1984
, “
On the Structure of Jets in a Crossflow
,”
J. Fluid Mech.
,
157
, pp.
163
197
.
22.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
23.
Ligrani
,
P. M.
,
Ciriello
,
S.
, and
Bishop
,
D. T.
,
1992
, “
Heat Transfer, Adiabatic Effectiveness, and Injectant Distributions Downstream of a Single Row and Two Staggered Rows of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
,
114
(
4
), pp.
687
700
.
24.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientation: Part 1–Results Downstream of Two Staggered Rows of Holes With 3D Spanwise Spacing
,”
ASME J. Turbomach.
,
116
(2), pp.
341
352
.
25.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometery and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
246
.
26.
Vedula
,
R. J.
, and
Metzger
,
D. E.
,
1991
, “
A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distribution in Three-Temperature Convection Situation
,”
ASME
Paper No. 91-GT-345.
27.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
28.
Teekaram
,
A. J. H.
,
Forth
,
C. J. P.
, and
Jones
,
T. V.
,
1989
, “
The Use of Foreign Gas to Simulate the Effects of Density Ratios in Film Cooling
,”
ASME J. Turbomach.
,
111
(
1
), pp.
57
62
.
29.
Dorignac
,
E.
, and
Vullierme
,
J. J.
, “
Etude Expérimentale des Coefficients d’échange d'un film de Refroidissement sur plaque Non-Athermane: Effet de la géométrie d'injection
,”
Int. J. Heat Mass Transfer
,
39
(
9
), pp.
1935
1951
.
30.
Messaadi
,
A.
,
1992
, “
Etude des échanges Convectifs le long d'une paroi à Multiperforation Incline. Application au refroidissement des parois des chambres de Combustion
,” Thèse du Doctorat de l'Université de Poitiers, Poitiers, France.
31.
Petre
,
B.
,
Dorignac
,
E.
, and
Vullierme
,
J. J.
,
2003
, “
Study of the Influence of the Number of Holes Rows on the Convective Heat Transfer in the Case of Full Coverage Film Cooling
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3477
3496
.
32.
Fenot
,
M.
,
2004
, “
Etude du Refroidissement par impact de jets application aux aubes de turbines
,” Thèse du Doctorat de l'Université de Poitiers, Poitiers, France.
33.
Dung
,
H. T. K.
,
2009
, “
Étude du Refroidissement d'une paroi Concave par l'impact d'un jet Bidimensionnel
,” Thèse du Doctorat de l'Université de Poitiers, Ensma, France.
34.
Thibault
,
D.
,
2009
, “
Étude du Refroidissement par Impact de jets à travers une paroi mince et avec un écoulement cisaillant amont: Application aux aubes de turbines
,” Thèse du Doctorat de l'Université de Poitiers, Ensma, France.
35.
Howell
,
J. R.
, and
Siegel
,
R.
,
1969
,
Thermal Radiation Heat Transfer, Vol-II; Radiation Exchange Between Surfaces and in Enclosures
,
National Aeronautics and Space Administration
, Washington, DC.
36.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
37.
Eriksen
,
V. K.
, and
Goldstein
,
R. J.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
239
245
.
38.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
39.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2003b
, “
Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow Part II: Heat Transfer Coefficients
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
237
249
.
40.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2007b
, “
Effect of Jet Pulsing on Film Cooling-Part 2: Heat Transfer Results
,”
ASME
Paper No. GT2006-91274.
41.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film-Cooling Holes With Expanded Exits: Near Hole Heat Transfer Coefficients
,”
Int. J. Heat Mass Transfer
,
21
(2), pp.
146
155
.
You do not currently have access to this content.