Convective heat transfer of a thermally developing rarefied gas flow in a microtube with boundary shear work, viscous dissipation, and axial conduction is analyzed numerically for both constant wall temperature (CWT) and constant wall heat flux (CHF) boundary conditions. Analytical solutions for the fully developed flow conditions including the boundary shear work are also derived. The proper thermal boundary condition considering the sliding friction at the wall for the CHF case is implemented. The sliding friction is also included in the calculation of the wall heat flux for the CWT case. A comparative study is performed to quantify the effect of the shear work on heat transfer in the entrance—and the fully developed—regions for both gas cooling and heating. Results are presented in both graphical and tabular forms for a range of problem parameters. The results show that the effect of shear work on heat transfer is considerable and it increases with increasing both the Knudsen number and Brinkman number. Neglecting the shear work in a microtube slip flow leads to over- or underestimating the Nusselt number considerably. In particular, for the CWT case with fully developed conditions, the contribution of the shear work to heat transfer can be around 45% in the vicinity of the upper limit of the slip flow regime, regardless of how small the nonzero Brinkman number can be.
Skip Nav Destination
Article navigation
Research-Article
The Role of the Shear Work in Microtube Convective Heat Transfer: A Comparative Study
K. Ramadan
K. Ramadan
Department of Mechanical Engineering,
Mu'tah University,
P. O. Box 7,
Karak 61710, Jordan
e-mail: rkhalid@mutah.edu.jo
Mu'tah University,
P. O. Box 7,
Karak 61710, Jordan
e-mail: rkhalid@mutah.edu.jo
Search for other works by this author on:
K. Ramadan
Department of Mechanical Engineering,
Mu'tah University,
P. O. Box 7,
Karak 61710, Jordan
e-mail: rkhalid@mutah.edu.jo
Mu'tah University,
P. O. Box 7,
Karak 61710, Jordan
e-mail: rkhalid@mutah.edu.jo
Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received December 28, 2013; final manuscript received May 6, 2015; published online August 11, 2015. Assoc. Editor: Sujoy Kumar Saha.
J. Heat Transfer. Jan 2016, 138(1): 011701 (11 pages)
Published Online: August 11, 2015
Article history
Received:
December 28, 2013
Revision Received:
May 6, 2015
Citation
Ramadan, K. (August 11, 2015). "The Role of the Shear Work in Microtube Convective Heat Transfer: A Comparative Study." ASME. J. Heat Transfer. January 2016; 138(1): 011701. https://doi.org/10.1115/1.4031107
Download citation file:
Get Email Alerts
Cited By
Entropic Analysis of the Maximum Output Power of Thermoradiative Cells
J. Heat Mass Transfer
Molecular Dynamics Simulations in Nanoscale Heat Transfer: A Mini Review
J. Heat Mass Transfer
Related Articles
Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
J. Heat Transfer (February,2012)
Viscous Dissipation and Rarefaction Effects on Laminar Forced Convection in Microchannels
J. Heat Transfer (July,2010)
Gaseous Slip Flow Mixed Convection in Vertical Microducts With Constant Axial Energy Input
J. Heat Transfer (March,2014)
Mixed Convection in a Vertical Microannulus Between Two Concentric Microtubes
J. Heat Transfer (January,2009)
Related Proceedings Papers
Related Chapters
Energy Balance for a Swimming Pool
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life
Generating Synthetic Electrocardiogram Signals Withcontrolled Temporal and Spectral Characteristics
Intelligent Engineering Systems through Artificial Neural Networks Volume 18
What Is a Watt?
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong