Fully developed turbulent flow in noncircular ducts is examined, and simple models are proposed to predict the friction, heat and mass transfer in most common noncircular channels. It is found that the square root of cross-sectional area is the relatively more appropriate length scale to use in defining the dimensionless parameters to ensure similarity between the circular and most noncircular ducts. By using the dimensionless parameters based on the square root of cross-sectional area, it is demonstrated that the circular tube relations may be applied to most noncircular ducts eliminating large errors in estimation. As turbulent transport phenomena are inherently complex and there, currently, is no extensive experimental data for turbulent heat and mass transfer in noncircular ducts, the simple models are valuable in spite of their limitations.

References

1.
Eckert
,
E. R. G.
, and
Irvine
,
T. F.
, 1956, “
Flow in Corners of Passages With Noncircular Cross Section
,”
Trans. ASME
,
78
, pp.
709
718
.
2.
Eckert
,
E. R. G.
, and
Irvine
,
T. F.
, 1960, “
Pressure Drop and Heat Transfer in a Duct With Triangular Cross-Section
,”
ASME J. Heat Transfer
,
82
, pp.
125
138
.
3.
Carlson
,
L. W.
, and
Irvine
,
T. F.
, 1961, “
Fully Developed Pressure Drop in Triangular Shaped Ducts
,”
ASME J. Heat Transfer
,
83
, pp.
441
444
.
4.
Nan
,
S. F.
, and
Dou
,
M.
, 2000, “
A Method of Correlating Fully Developed Turbulent Friction in Triangular Ducts
,”
ASME J. Fluids Eng.
,
122
, pp.
634
636
.
5.
Muzychka
,
Y. S.
, and
Yovanovich
M. M.
, 2002, “
Laminar Flow Friction and Heat Transfer in Non-Circular Ducts and Channels: Part I-Hydrodynamic Problem
,”
Compact Heat Exchangers, A Festschrift on the 60th Birthday of Ramesh K. Shah
, Grenoble, France, pp.
123
130
.
6.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
, 2007, “
Slip Flow in Non-Circular Microchannels
,”
Microfluid. Nanofluid.
,
3
, pp.
473
484
.
7.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
, 2010, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
132
,
011201
.
8.
Duan
,
Z. P.
, and
Yovanovich
,
M. M.
, 2009, “
Pressure Drop for Laminar Flow in Microchannels of Arbitrary Cross-Sections
,”
Semi-Therm 25 Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, pp.
111
120
.
9.
Blasius
,
H.
, 1913, “
Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten
,”
VDI Forschungsh.
,
131
, pp.
1
12
.
10.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
11.
Prandtl
,
L.
, 1935, “
The Mechanics of Viscous Fluids
,”
Aerodynamic Theory
, Vol.
III
,
W. F.
Durand
, ed.,
Springer
,
Berlin
, p.
142
.
12.
von
Karman
,
T.
, 1934, “
Turbulence and Skin Friction
,”
J. Aeronaut. Sci.
,
7
, pp.
1
20
.
13.
Nikuradse
,
J.
, 1932, “
Gesetzmassigkeit der turbulenten Stromung in glatten Rohren
,”
VDI Forschungsh.
,
356
,
1
36
.
14.
Nikuradse
,
J.
, 1930, “
Untersuchungen uber turbulent Stromung in nicht kreisformigen Rohren
,”
Ing.-Arch.
,
1
, pp.
306
332
.
15.
Colebrook
,
C. R.
, 1939, “
Turbulent Flow in Pipes With Particular Reference to the Transition Region Between Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
, pp.
133
156
.
16.
Filonenko
,
G. K.
, 1954, “
Hydraulic Resistance in Pipes
,”
Teploenergetika
,
1
, pp.
40
44
.
17.
Techo
,
R.
,
Tickner
,
R. R.
, and
James
,
R. E.
, 1965, “
An Accurate Equation for the Computation of the Friction Factor for Smooth Pipes From the Reynolds Number
,”
ASME J. Appl. Mech.
,
32
, pp.
443
446
.
18.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
, 1987,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
19.
Duan
,
Z. P.
,
Yovanovich
,
M. M.
, and
Muzychka
,
Y. S.
, 2010, “
Pressure Drop for Fully Developed Turbulent Flow in Noncircular Microchannels
,”
ASME J. Fluids Eng.
, submitted.
20.
Schiller
,
L.
, 1923, “
Uber den Stromungswiderstand von Rohrenverschiedenen Querschitts und Rauhigkeitsgrades
,”
Z. Angew Math. Mech.
,
3
, pp.
2
13
.
21.
Obot
,
N. T.
, and
Adu-Wusu
,
K.
, 1985, “
The Flow Pattern in a Scalene Triangular Duct Having Two Rounded Corners
,”
ASME J. Fluids Eng.
,
107
, pp.
455
459
.
22.
Colburn
,
A. P.
, 1933, “
A Method for Correlating Forced Convection Heat Transfer Data and a Comparison With Fluid Friction
,”
Tran. Am. Inst. Chem. Eng.
,
29
, pp.
174
210
.
23.
McKeon
,
B. J.
,
Zagarola
,
M. V.
, and
Smits
,
A. J.
, 2005, “
A New Friction Factor Relationship for Fully Developed Pipe Flow
,”
J. Fluid Mech.
,
538
, pp.
429
443
.
24.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
25.
Petukhov
,
B. S.
, and
Popov
,
V. N.
, 1963, “
Theoretical Calculation for Heat Exchange and Frictional Resistance in Turbulent Flow in Tubes of an Incompressible Fluid With Variable Physical Properties
,”
High Temp.
,
1
, pp.
69
83
.
26.
Gnielinski
,
V.
, 1999, “
Single-Phase Convective Heat Transfer: Forced Convection in Ducts, Heat Exchanger Design Updates
,”
Heat Exchanger Design Handbook
,
Begell House
,
New York
, Chap. 5.
27.
Notter
,
R. H.
, and
Sleicher
,
C. A.
, 1972, “
A Solution to the Turbulent Graetz Problem III. Fully Developed and Entry Region Heat Transfer Rates
,”
Chem. Eng. Sci.
,
27
, pp.
2073
2093
.
You do not currently have access to this content.