Abstract

This paper analyzes the thermal and hydraulic performance of a counterflow microchannel heat exchanger (CFMCHE) with and without nanofluid as working fluid. A 3D conjugate heat transfer simulation is carried out using a finite volume approach to evaluate the effects of inlet Reynolds number, Brownian motion, and volume fraction of nanoparticles on the pumping power, effectiveness, and performance index of CFMCHE. The accuracy of the code has been verified by comparing the results with those available in the literature. A single phase approach is used for the nanofluid modeling. The base fluid used in the analyses as a basis for comparison was pure water. Two types of nanofluids, namely, water-Al2O3 with a mean diameter of 47 nm and water-CuO with a mean diameter of 29 nm, each one with three different volume fractions, are utilized. In addition, two temperature dependent models for the thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion are used. Calculated results demonstrate that the effectiveness and performance index of CFMCHE decrease with increasing Reynolds number. Moreover, it is observed that the relative enhancements in the pumping power become more prominent for higher values of Reynolds numbers. It was also found that the performance index and pumping power are not sensitive to volume fraction at higher and lower Reynolds numbers, respectively.

1.
Vafai
,
K.
, and
Zhu
,
L.
, 2002, “
Two-Layered Micro Channel Heat Sink, Devices and Systems Incorporating Same
,” U.S. Patent No. 6,457,515.
2.
Vafai
,
K.
, and
Zhu
,
L.
, 2004, “
Multi-Layered Micro Channel Heat Sinks
,” U.S. Patent No. 6,675,875.
3.
Vafai
,
K.
, and
Khaled
,
A. R.
, 2010, “
Methods and Devices Comprising Flexible Seals, Flexible Microchannels, or Both for Modulating or Controlling Flow and Heat
,” U.S. Patent No. 7,770,809.
4.
Vafai
,
K.
, and
Zhu
,
L.
, 1999, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
12
), pp.
2287
2297
.
5.
Albakhit
,
H.
, and
Fakheri
,
A.
, 2005, “
A Hybrid Approach for Full Numerical Simulation of Heat Exchangers
,”
Proceedings of the ASME Heat Transfer Summer Conference
, San Francisco, CA, Jul. 17–22.
6.
Brandner
,
J. J.
,
Anurjew
,
E.
,
Buhn
,
L.
,
Hansjosten
,
E.
,
Henning
,
T.
,
Schygulla
,
U.
,
Wenka
,
A.
, and
Schubert
,
K.
, 2006, “
Concept and Realization of Microstructure Heat Exchangers for Enhanced Heat Transfer
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
801
809
.
7.
Kang
,
S. W.
, and
Tseng
,
S. C.
, 2007, “
Analysis of Effectiveness and Pressure Drop in Micro Cross-Flow Heat Exchanger
,”
Appl. Therm. Eng.
1359-4311,
27
(
5–6
), pp.
877
885
.
8.
Hasan
,
M. I.
,
Rageb
,
A. A.
,
Yaghoubi
,
M.
, and
Homayoni
,
H.
, 2009, “
Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger
,”
Int. J. Therm. Sci.
1290-0729,
48
(
8
), pp.
1607
1618
.
9.
Mathew
,
B.
, and
Hegab
,
H.
, 2010, “
Application of Effectiveness-NTU Relationship to Parallel Flow Microchannel Heat Exchangers Subjected to External Heat Transfer
,”
Int. J. Therm. Sci.
1290-0729,
49
(
1
), pp.
76
85
.
10.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D.
, and
Wongwises
,
S.
, 2010, “
Enhancement of Heat Transfer Using Nanofluids—An Overview
,”
Renewable Sustainable Energy Rev.
1364-0321,
14
, pp.
629
641
.
11.
Lee
,
S.
, and
Choi
,
S. U. S.
, 1996, “
Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems
,”
Proceedings of the Recent Advances in Solids/Structures and Application of Metallic Materials
, ASME Paper No. PVP 342/MD-72, pp.
227
234
.
12.
Chein
,
R.
, and
Huang
,
G.
, 2005, “
Analysis of Microchannel Heat Sink Performance Using Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
3104
3114
.
13.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2005, “
Laminar Nanofluid Flow in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2652
2661
.
14.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2006, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
2457
2463
.
15.
Chein
,
R.
, and
Chuang
,
J.
, 2007, “
Experimental Microchannel Heat Sink Performance Studies Using Nanofluids
,”
Int. J. Therm. Sci.
1290-0729,
46
(
1
), pp.
57
66
.
16.
Tsai
,
T. H.
, and
Chein
,
R.
, 2007, “
Performance Analysis of Nanofluid-Cooled Microchannel Heat Sinks
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
1013
1026
.
17.
Li
,
J.
, and
Kleinstreuer
,
C.
, 2008, “
Thermal Performance of Nanofluid Flow in Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
1221
1232
.
18.
Wang
,
X. -Q.
, and
Mujumdar
,
A. S.
, 2007, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1
19
.
19.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
I & EC Fundamentals
, Vol.
1
, pp.
187
191
.
20.
Maxwell
,
J. C.
, 1904,
A Treatise on Electricity and Magnetism
, 2nd ed.,
Oxford University Press
,
Cambridge, UK
.
21.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
The Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
22.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
1388-0764,
6
, pp.
577
588
.
23.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
, 2003, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
0001-1541,
49
, pp.
1038
1043
.
24.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
588
595
.
25.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
617
623
.
26.
Kleinstreuer
,
C.
, and
Li
,
J.
, 2008, “
Discussion: “Effects of Various Parameters on Nanofluid Thermal Conductivity (Jang, S. P., and Choi, S. D. S., 2007, ASME J. Heat Transfer, 129, pp. 617–623)
,”
ASME J. Heat Transfer
0022-1481,
130
(
2
), p.
025501
.
27.
Vajjha
,
R. S.
, and
Das
,
D. K.
, 2009, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
4675
4682
.
28.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlations of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3701
3707
.
29.
Pak
,
B. C.
, and
Cho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particle
,”
Exp. Heat Transfer
0891-6152,
11
, pp.
151
170
.
30.
Li
,
J.
, 2008, “
Computational Analysis of Nanofluid Flow in Microchannels With Applications to Micro-Heat Sinks and Bio-MEMS
,” Ph.D. thesis, MAE Department, NCSU, Raleigh, NC.
31.
Xuan
,
Y.
,
Li
,
Q.
,
Zhang
,
X.
, and
Fujii
,
M.
, 2006, “
Stochastic Thermal Transport of Nanoparticle Suspensions
,”
J. Appl. Phys.
0021-8979,
100
, p.
043507
.
32.
Xue
,
Q. Z.
, 2006, “
Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
0957-4484,
17
, pp.
1655
1660
.
33.
Brinkman
,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
0021-9606,
20
, pp.
571
581
.
34.
Kwak
,
H. S.
,
Kin
,
H.
,
Jae
,
M. H.
, and
Tae-Ho
,
S.
, 2009, “
Thermal Control of Electroosmotic Flow in a Microchannel Through Temperature-Dependent Properties
,”
J. Colloid Interface Sci.
0021-9797,
335
, pp.
123
129
.
35.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
, 1964, “
Thermal Conductivity of Silicon and Germanium From 3K to the Melting Point
,”
Phys. Rev.
0031-899X,
134
, pp.
A1058
A1069
.
36.
Barth
,
T. J.
, and
Jesperson
,
D.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. 89-0366.
37.
Leonard
,
B. P.
, 1995, “
Order of Accuracy of Quick and Related Convection-Diffusion Schemes
,”
Appl. Math. Model.
0307-904X,
19
, pp.
640
653
.
38.
Vandoormall
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flow
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
39.
Wei
,
X.
,
Joshi
,
Y.
, and
Patterson
,
M.
, 2007, “
Experimental and Numerical Study of Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1432
1444
.
40.
Farid
,
M.
,
Smith
,
R.
,
Sabbah
,
R.
, and
Al-Hallaj
,
S.
, 2007, “
Miniaturized Refrigeration System With Advanced PCM Micro Encapsulation Technology
,”
Fifth Conference on Nanochannels, Microchannels, and Minichannles
, Puebla, Mexico.
You do not currently have access to this content.