In this study, the local convective heat transfer from a rotating disk with a transverse air crossflow was evaluated using an infrared thermographic experimental setup. Solving the inverse conduction heat transfer problem allows the local convective heat transfer coefficient to be identified. We used the specification function method along with spatio-temporal regularization to develop a model of local convective heat transfer in order to take lateral conduction and 2D geometry into account. This model was tested using rotational Reynolds numbers (based on the cylinder diameter and the peripheral speed) between 0 and 17,200 and air crossflow Reynolds numbers between 0 and 39,600. In this paper, the distribution of the local heat transfer on the disk allows us to observe the combined effect of the rotation and air crossflow on heat exchanges. This coupling is able to be taken into account in a correlation of mean Nusselt number relative to both Reynolds numbers.

1.
Gregory
,
N.
,
Stuart
,
J.
, and
Walker
,
W.
, 1955, “
On the Stability of Free Dimensional Boundary Layer With Application to the Flow Due to Rotating Disk
,”
Philos. Trans. R. Soc. London
0962-8428,
248
, pp.
155
199
.
2.
Kreith
,
F.
, 1967,
Transmission de la Chaleur et Thermodynamique, Masson et Cie Editeurs, Traduction Franaise de l’Ouvrage de Frank Kreith: Principles of Heat Transfer
,
International Textbook Company
,
Paris
.
3.
Dorfman
,
L.
, 1963,
Hydrodynamic Resistance and Heat Loss From Rotating Solids
,
Oliver & Boyd
,
Edinburgh
.
4.
Millsaps
,
K.
, and
Polhausen
,
K.
, 1952, “
Heat Transfer by Laminar Flow From a Rotating Plate
,”
J. Aeronaut. Sci.
0095-9812,
19
, pp.
120
126
.
5.
Wagner
,
C.
, 1948. “
Heat Transfer From a Rotating Disk to Ambient Air
,”
J. Appl. Phys.
0021-8979,
19
, pp.
837
839
.
6.
Goldstein
,
S.
, 1935, “
On the Resistance to the Rotation of a Disk Immersed in a Fluid
,”
Proc. Cambridge Philos. Soc.
0068-6735,
31
, pp.
232
241
.
7.
Richardson
,
P.
, and
Saunders
,
O.
, 1963, “
Studies of Flow and Heat Transfer Associated With a Rotating Disk
,”
J. Mech. Eng. Sci.
0022-2542,
5
, pp.
336
342
.
8.
Dennis
,
R.
,
Newstead
,
C.
, and
Ede
,
A.
, 1970. “
The Heat Transfer From a Rotating Disc in an Air Crossflow
,”
Proceedings of the Fourth International Heat Transfer Conference
, Paper No. FC 7.1.
9.
aus der Wiesche
,
S.
, 2007. “
Heat Transfer From a Rotating Disk in a Parallel Air Crossflow
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
745
754
.
10.
Goldstein
,
R.
, and
Karni
,
J.
, 1984, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
260
267
.
11.
Sung
,
H.
,
Yang
,
J.
, and
Park
,
T.
, 1996, “
Local Convective Mass Transfer on Circular Cylinder With Transverse Annular Fins in Crossflow
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
1093
1101
.
12.
Schüz
,
G.
, and
Kottke
,
V.
, 1987. “
Visualization of Flow, Heat, and Mass Transfer on Finned Tubes in Cross Flow
,”
Proceedings of the Fourth International Symposium on Flow Visualization
,
Hemisphere
,
Washington, D.C.
.
13.
Schüz
,
G.
, and
Kottke
,
V.
, 1992, “
Local Heat Transfer and Heat Flux Distributions in Finned Tube Heat Exchangers
,”
Chem. Eng. Technol.
0930-7516,
15
, pp.
417
424
.
14.
Sparrow
,
E.
, and
Preston
,
C.
, 1986, “
Heat Transfer From Rotating Annular Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
831
839
.
15.
Fisher
,
E.
, and
Eibeck
,
P.
, 1990, “
The Influence of a Horseshoe Vortex on Local Convective Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
329
335
.
16.
Roulund
,
A.
,
Mutlu Sumer
,
B.
,
Fredsoe
,
J.
, and
Michelsen
,
J.
, 2005, “
Numerical and Experimental Investigation of Flow and Scour Around a Circular Pile
,”
J. Fluid Mech.
0022-1120,
534
, pp.
351
401
.
17.
Fu
,
H.
, and
Rockwell
,
D.
, 2005, “
Shallow Flow Past a Cylinder: Transition Phenomena at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
540
, pp.
75
97
.
18.
Sahin
,
B.
,
Ozturk
,
N.
, and
Gurlek
,
C.
, 2008, “
Horseshoe Vortex Studies in the Passage of a Model Plate-Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
340
351
.
19.
Watel
,
B.
, 1997. “
Etude des Échanges Convectifs sur un Cylindre Aileté en Rotation Soumis un Courant d’Air Parallèle aux Ailettes
,” Ph.D. thesis, Université de Valenciennes et du Hainaut Cambrésis, Valenciennes, France.
20.
Bougeard
,
D.
, 2007, “
Infrared Thermography Investigation of Local Heat Transfer in a Plate Fin and Two-Tube Rows Assembly
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
988
1002
.
21.
Beck
,
J.
,
Blackwell
,
B.
, and
St. Clair
,
C.
, 1985,
Inverse Heat Conduction–Ill-Posed Problems
,
Wiley Interscience
,
New York
.
22.
Tikhonov
,
A.
, and
Arsenin
,
V.
, 1977,
Solution of Ill-Posed Problems
,
V. H. Winston & Sons
,
Washington
.
23.
El Abbadi
,
A.
, 2005. “
Dévelopement de Méthodes de Mesures des Transferts Convectifs par Thermographie Infrarouge: Application aux Ailettes d’Échangeurs Hautes Performances
,” Ph.D. thesis, Universit de Valenciennes et du Hainaut Cambrsis, Departement Energtique Industrielle de l’Ecole des Mines de Douai.
24.
Moffat
,
R.
, 1988, “
Describing the Uncertainty in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
25.
Blanc
,
G.
,
Raynaud
,
M.
, and
Chau
,
T.
, 1998, “
A Guide for the Use of the Function Specification Method for 2D Inverse Heat Conduction Problems
,”
Rev. Gen. Therm.
0035-3159,
37
, pp.
17
30
.
You do not currently have access to this content.