Previous investigations on the performance of straight pins, pins with tip clearance, and profiled fins showed that closely packed cylindrical pin fins are very competitive with the modified pins. Therefore, the objective of this paper is to investigate the effect of pin density on performance. Steady/time-dependent calculations are performed to investigate the effect of pin density on friction and heat transfer. Pins packed at distances of SD=1.1, 1.2, 1.3, 1.4, 1.5, 2.0, 2.5, and 3 pin diameters (D) are investigated for 10ReD600. Two performance measures are used to compare the different pin fin densities. The first measure is to maximize heat transfer capacity for a given pumping power compared with a plane channel. The second measure used is based on entropy generation minimization (EGM), where the objective is to reduce the total irreversibility of the pin fin array to obtain an optimal spacing. Based on the performance measure of maximizing heat capacity, it is shown that for plain channels operating in the laminar range using denser pin packing has distinct advantages with SD=1.1 providing the best augmentation. However, the augmentation in heat capacity becomes relatively independent of the pin density for a channel operating in the turbulent regime. Based on the EGM method, at ReD>200, SD=1.3, 1.4, and 1.5 are the most suitable, with the least entropy generation observed at SD=1.4. At ReD<200, SD=1.1, 1.2, and 1.3 are also suitable for keeping entropy generation low.

1.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
, 1998, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
362
367
.
2.
Jubran
,
B. A.
,
Hamdan
,
M. A.
, and
Abdulah
,
R. M.
, 1993, “
Enhanced Heat Transfer, Missing Pin and Optimization for Cylindrical Pin Fin Arrays
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
576
583
.
3.
Uzol
,
O.
, and
Camci
,
C.
, 2005, “
Heat Transfer, Pressure Loss and Flow Field Measurement Downstream a Staggered Two-Row Circular and Pin Fin Arrays
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
458
471
.
4.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
700
706
.
5.
Armstrong
,
J.
, and
Winstanley
,
D.
, 1988, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
94
103
.
6.
Short
,
B. E.
, Jr.
, and
Raad
,
P. E.
, 2002, “
Performance of Pin Fin Cast Aluminum Cold Walls, Part 1: Friction Factor Correlations
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
3
), pp.
389
396
.
7.
Short
,
B. E.
, Jr.
,
Raad
,
P. E.
, and
Price
,
D. C.
, 2002, “
Performance of Pin Fin Cast Aluminum Cold Walls, Part 2: Colburn j-Factor Correlations
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
3
), pp.
397
403
.
8.
Ko
,
J. H.
,
Ewing
,
M. E.
,
Guezennec
,
Y. G.
, and
Christensen
,
R. N.
, 2002, “
Development of a Low Reynolds Number Enhanced Heat Transfer Surface Using Flow Visualization Techniques
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
444
454
.
9.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovic
,
D.
,
Durst
,
F.
, and
Franz
,
E.
, 2006, “
Performance Comparison of Pin Fin in Duct Flow Arrays With Various Pin Cross Sections
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1176
1192
.
10.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2004, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1731
1743
.
11.
Dong
,
S.
,
Liu
,
S.
, and
Su
,
H.
, 2001, “
An Experimental Investigation of Heat Transfer in Pin Fin Array
,”
Heat Transfer Asian Res.
1099-2871,
30
, pp.
533
541
.
12.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
, 2005, “
Forced Convection Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3615
3627
.
13.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
, 2005, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
419
430
.
14.
Koşar
,
A.
, and
Peles
,
Y.
, 2006, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
121
131
.
15.
Koşar
,
A.
, and
Peles
,
Y.
, 2007, “
TCPT-2006-096.R2: Micro Scale Pin Fin Heat Sinks—Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
, pp.
855
865
.
16.
Rozati
,
A.
,
Tafti
,
D. K.
, and
Blackwell
,
N. E.
, 2007, “
Thermal Performance of Pin Fins at Low Reynolds Numbers in Mini-Micro-Channels
,” ASME Paper No. HT2007-32158.
17.
Rozati
,
A.
,
Tafti
,
D. K.
, and
Blackwell
,
N. E.
, 2008, “
Effect of Tip Clearance on Flow and Heat Transfer at Low Reynolds Numbers
,
ASME J. Heat Transfer
0022-1481,
130
(
7
), p.
071704
.
18.
Sreedharan
,
S. S.
,
Tafti
,
D. K.
, and
Rozati
,
A.
, 2008, “
Heat-Mass Transfer and Friction Characteristics of Profiled Pins at Low Reynolds Numbers
,”
Numer. Heat Transfer, Part A
1040-7782,
54
(
2
), pp.
130
150
.
19.
Zhang
,
L.
,
Tafti
,
D. K.
,
Najjar
,
F.
, and
Balachander
,
S.
, 1997, “
Computations of Flow and Heat Transfer in Parallel Plate Fin Heat Exchangers on the CM-5: Effect of Flow Unsteadiness and Three-Dimensionality
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
6
), pp.
1325
1341
.
20.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
, 1977, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
180
186
.
21.
Tafti
,
D. K.
, 2001, “
GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
Proceedings of the ASME Fluids Engineering Division
,
FED-256
, ASME, New York.
22.
Tafti
,
D. K.
, 2005, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
0142-727X,
26
(
1
), pp.
92
104
.
23.
Sewall
,
E. A.
,
Tafti
,
D. K.
,
Thole
,
K. A.
, and
Graham
,
A.
, 2006, “
Experimental Validation of Large Eddy Simulation of Flow and Heat Transfer in Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
0142-727X,
27
(
2
), pp.
243
258
.
24.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
, 2008, “
Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
11-12
), pp.
2950
2966
.
25.
Bejan
,
A.
, 1987, “
The Thermodynamic Design of Heat and Mass Transfer Processes and Devices
,”
Int. J. Heat Fluid Flow
0142-727X,
8
(
4
), pp.
258
276
.
26.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2006,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
27.
Bejan
,
A.
, 1996,
Entropy Generation Minimization, The Method of Thermodynamic Optimization of Finite Size Systems and Finite Time Processes
,
CRC
,
Boca Raton, FL
.
28.
Taufiq
,
B. N.
,
Masjuki
,
H. H.
,
Mahlia
,
T. M. I.
,
Saidur
,
R.
,
Faizul
,
M. S.
, and
Niza Mohamad
,
E.
, 2007, “
Second Law Analysis for Optimal Thermal Design of Radial Fin Geometry by Convection
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
1363
1370
.
29.
Lin
,
W. W.
, and
Lee
,
D. J.
, 1997, “
Second Law Analysis on a Pin Fin Array Under Cross Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
8
), pp.
1937
1945
.
You do not currently have access to this content.