Abstract

The effect of axial corrugated surface roughness on fully developed laminar flow in microtubes is investigated. The radius of a microtube varies with the axial distance due to corrugated roughness. The Stokes equation is solved using a perturbation method with slip at the boundary. Analytical models are developed to predict friction factor and pressure drop in corrugated rough microtubes for continuum flow and slip flow. The developed model proposes an explanation on the observed phenomenon that some experimental pressure drop results for microchannel flow have shown a significant increase due to roughness. The developed model for slip flow illustrates the coupled effects between velocity slip and small corrugated roughness. Compressibility effect has also been examined and simple models are proposed to predict the pressure distribution and mass flow rate for slip flow in corrugated rough microtubes.

1.
Wu
,
P.
, and
Little
,
W. A.
, 1983, “
Measurement of Friction Factors for Flows of Gases in Very Fine Channels Used for Microminiature Joule-Thompson Refrigerators
,”
Cryogenics
0011-2275,
23
, pp.
273
277
.
2.
Wu
,
P.
, and
Little
,
W. A.
, 1984, “
Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators
,”
Cryogenics
0011-2275,
24
, pp.
415
420
.
3.
Harley
,
J.
,
Bau
,
H.
,
Zemel
,
J. N.
, and
Dominko
,
V.
, 1989, “
Fluid Flow in Micron and Submicron Size Channels
,”
Proceedings of the Workshop on Micro Electro Mechanical Systems
, Salt Lake City, UT, pp.
25
28
.
4.
Peng
,
X. F.
, and
Peterson
,
G. P.
, 1996, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2599
2608
.
5.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
, 1994, “
Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer
0891-6152,
7
, pp.
249
264
.
6.
Wilding
,
P.
,
Shoffner
,
M. A.
, and
Kircka
,
L. J.
, 1994, “
Manipulation and Flow of Biological Fluids in Straight Channels Micromachined in Silicon
,”
Clin. Chem.
0009-9147,
40
, pp.
43
47
.
7.
Wu
,
S.
,
Mai
,
J.
,
Zohar
,
Y.
,
Tai
,
Y. C.
, and
Ho
,
C. M.
, 1998, “
A Suspended Microchannel With Integrated Temperature Sensors for High Pressure Flow Studies
,”
Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems
, Heidelberg, Germany, pp.
87
92
.
8.
Urbanek
,
W.
,
Zemel
,
J. N.
, and
Bau
,
H.
, 1993, “
An Investigation of the Temperature Dependence of Poiseuille Numbers in Microchannel Flow
,”
J. Micromech. Microeng.
0960-1317,
3
, pp.
206
209
.
9.
Papautsky
,
I.
,
Brazzle
,
J.
,
Ameel
,
T. A.
, and
Frazier
,
A. B.
, 1998, “
Microchannel Fluid Behavior Using Micropolar Fluid Behavior
,”
Proceedings of the 1998 IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems
, Heidelberg, Germany, pp.
544
549
.
10.
Pfund
,
D.
,
Rector
,
D.
,
Shekarriz
,
A.
,
Popescu
,
A.
, and
Welty
,
J.
, 1998, “
Pressure Drop Measurements in a Microchannel
,”
Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition: DSC Micro-Electro-Mechanical Systems
, Vol.
66
, pp.
193
198
.
11.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 1999, “
Pressure-Driven Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
353
364
.
12.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Fully Developed, Laminar Flow in Rough Microtubes
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
632
637
.
13.
Mala
,
G. M.
, and
Li
,
D.
, 1999, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
142
148
.
14.
Kulinsky
,
L.
,
Wang
,
Y.
, and
Ferrari
,
M.
, 1999, “
Electroviscous Effects in Microchannels
,”
SPIE Conference on Micro- and Nanofabricated Structures and Devices for Biomedical Environment Applications II
, San Jose, CA, Vol.
3606
, pp.
158
168
.
15.
Ding
,
L. S.
,
Sun
,
H.
,
Sheng
,
X. L.
, and
Lee
,
B. D.
, 2000, “
Measurement of Friction Factor for R134a and R12 Through Microchannels
,”
Proceedings of the Symposium on Energy Engineering in the 21st Century
, Vol.
2
, pp.
650
657
.
16.
Li
,
Z. X.
,
Du
,
D. X.
, and
Guo
,
Z. Y.
, 2000, “
Characteristics of Frictional Resistance for Gas Flow in Microtubes
,”
Proceedings of the Symposium on Energy Engineering in the 21st Century
, Vol.
2
, pp.
658
664
.
17.
Kandlikar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
, 2001, “
Effect of Channel Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Proceedings of the 35th National Heat Transfer Conference
, Anaheim, CA, Paper No. 12134.
18.
Li
,
Z. X.
,
Du
,
D. X.
, and
Guo
,
Z. Y.
, 2003, “
Experimental Study on Flow Characteristics of Liquid in Circular Microtubes
,”
Microscale Thermophys. Eng.
1089-3954,
7
, pp.
253
265
.
19.
Yu
,
D.
,
Warrington
,
R.
,
Barron
,
R.
, and
Ameel
,
T. A.
, 1995, “
Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes
,”
Proceedings of the 1995 ASME/JSME Thermal Engineering Joint Conference
, Maui, HI, Vol.
1
, pp.
523
530
.
20.
Pfund
,
D.
,
Shekarriz
,
A.
,
Popescu
,
A.
, and
Welty
,
J. R.
, 2000, “
Pressure Drop Measurements in a Microchannel
,”
AIChE J.
0001-1541,
46
, pp.
1496
1507
.
21.
Celata
,
G. P.
,
Cumo
,
M.
,
Guglielmi
,
M.
, and
Zummo
,
G.
, 2000, “
Experimental Investigation of Hydraulic and Single Phase Heat Transfer in 0.130 mm Capillary Tube
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
,
G. P.
Celata
, ed.,
Begell House
,
New York
, pp.
108
113
.
22.
Li
,
Z. X.
,
Du
,
D. X.
, and
Guo
,
Z. Y.
, 2000, “
Experimental Study on Flow Characteristics of Liquid in Circular Microtubes
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
,
G. P.
Celata
, ed.,
Begell House
,
New York
, pp.
162
168
.
23.
Bucci
,
A.
,
Celata
,
G. P.
,
Cumo
,
M.
,
Serra
,
E.
, and
Zummo
,
G.
, 2003, “
Fluid Flow and Single-Phase Flow Heat Transfer of Water in Capillary Tubes
,”
Proceedings of the International Conference on Minichannels and Microchannels
, Rochester, NY, Paper No. ICMM-1037.
24.
Tu
,
X.
, and
Hrnjak
,
P.
, 2003, “
Experimental Investigation of Single-Phase Flow Pressure Drop Through Rectangular Microchannels
,”
Proceedings of the International Conference on Minichannels and Microchannels
, Rochester, NY, Paper No. ICMM-1028.
25.
Baviere
,
R.
,
Ayela
,
F.
,
Le Person
,
S.
, and
Favre-Marinet
,
M.
, 2004, “
An Experimental Study of Water Flow in Smooth and Rough Rectangular Micro-Channels
,”
Proceedings of the Second International Conference on Minichannels and Microchannels
, Rochester, NY, Paper No. ICMM2004-2338.
26.
Tang
,
G. H.
,
Li
,
Z.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2007, “
Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2282
2295
.
27.
Kleinstreuer
,
C.
, and
Koo
,
J.
, 2004, “
Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
1
9
.
28.
Wang
,
X. Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
, 2005, “
Effects of Two-Dimensional Roughness in Flow in Microchannel
,”
ASME J. Electron. Packag.
1043-7398,
127
, pp.
357
361
.
29.
Priezjev
,
N. V.
, and
Troian
,
S. M.
, 2006, “
Influence of Periodic Wall Roughness on the Slip Behaviour at Liquid/Solid Interfaces: Molecular-Scale Simulations Versus Continuum Predictions
,”
J. Fluid Mech.
0022-1120,
554
, pp.
25
46
.
30.
Li
,
W. L.
,
Lin
,
J. W.
,
Lee
,
S. C.
, and
Chen
,
M. D.
, 2002, “
Effects of Roughness on Rarefied Gas Flow in Long Microtubes
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
149
156
.
31.
Sun
,
H.
, and
Faghri
,
M.
, 2003, “
Effects of Surface Roughness on Nitrogen Flow in a Microchannel Using the Direct Simulation Monte Carlo Method
,”
Numer. Heat Transfer
0149-5720,
43
, pp.
1
8
.
32.
Langlois
,
W. E.
, 1958, “
Creeping Viscous Flow Through a Two-Dimensional Channel of Varying Gap
,”
Proceedings of the Third National Congress of Applied Mechanics
, pp.
777
783
.
33.
Langlois
,
W. E.
, 1958,
Slow Viscous Flow
,
Macmillan
,
New York
.
34.
Tanner
,
R. I.
, and
Linnett
,
I. W.
, 1965, “
Pressure Losses in Viscometric Capillary Tubes of Varying Diameter
,”
Second Australian Conference on Hydraulics and Fluid Mechanics A
, pp.
159
166
.
35.
Manton
,
M. J.
, 1971, “
Low Reynolds Number Flow in Slowly Varying Axisymmetric Tubes
,”
J. Fluid Mech.
0022-1120,
49
, pp.
451
459
.
36.
Phan-Thien
,
N.
, 1980, “
On the Stokes Flow of Viscous Fluids Through Corrugated Pipes
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
961
963
.
37.
Vasudeviah
,
M.
, and
Balamurugan
,
K.
, 1999, “
Stokes Slip Flow in a Corrugated Pipe
,”
Int. J. Eng. Sci.
0020-7225,
37
, pp.
1629
1641
.
38.
Wang
,
C. Y.
, 1979, “
On Stokes Flow Between Corrugated Plates
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
462
464
.
39.
Chu
,
K. -H. W.
, 1996, “
Stokes Slip Flow Between Corrugated Walls
,”
Z. Angew. Math. Phys.
0044-2275,
47
, pp.
591
599
.
40.
Chu
,
K. -H. W.
, 1999, “
Small-Knudsen-Number Flow in a Corrugated Tube
,”
Meccanica
0025-6455,
34
, pp.
133
137
.
41.
Karniadakis
,
G. E.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Microflows and Nanoflows
,
Springer
,
New York
.
42.
Hadjiconstantinou
,
N. G.
, 2005, “
Validation of a Second-Order Slip Model for Dilute Gas Flows
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
9
, pp.
137
153
.
43.
Sone
,
Y.
, 1973, “
New Kind of Boundary Layer of a Convex Solid Boundary in a Rarefied Gas
,”
Phys. Fluids
1070-6631,
16
, pp.
1422
1424
.
44.
Sone
,
Y.
, 2000,
Kinetic Theory and Fluid Dynamics
,
Birkhauser
,
Boston
.
45.
Cercignani
,
C.
, 1988,
The Boltzmann Equation and Its Applications
,
Springer
,
New York
.
46.
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2006, “
Challenges in Modeling Gas-Phase Flow in Microchannels: From Slip to Transition
,”
Heat Transfer Eng.
0145-7632,
27
, pp.
3
12
.
47.
Goldstein
,
S.
, 1938,
Modern Developments in Fluid Dynamics
,
Oxford University Press
,
Oxford, London
.
48.
Rohsenow
,
W. M.
, and
Choi
,
H. Y.
, 1961,
Heat, Mass, and Momentum Transfer
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
49.
Chung
,
P.
,
Kawaji
,
M.
, and
Kawahara
,
A.
, 2002, “
Characteristics of Single-Phase Flow in Microchannels
,”
Proceedings of the ASME 2002 Fluids Engineering Division Summer Meeting
, Montreal, Canada.
50.
Kohl
,
M. J.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Sadowski
,
D. I.
, 2005, “
An Experimental Investigation of Microchannel Flow With Internal Pressure Measurements
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1518
1533
.
You do not currently have access to this content.