New generation supercomputers with three dimensional stacked chip architectures pose a major challenge with respect to the removal of dissipated heat, which can reach currently as high as 250W/cm2 in multilayer chip stacks of less than 0.3cm3 volume. Interlayer integrated water cooling is a very promising approach for such high heat flux removal due to much larger thermal capacity and conductivity of water compared with air, the traditional cooling fluid. In the current work, a multiscale conjugate heat transfer model is developed for integrated water cooling of chip layers and validated with experimental measurements on an especially designed thermal test vehicle that simulates a four tier chip stack with a footprint of 1cm2. The cooling heat transfer structure, which consists of microchannels with cylindrical pin-fins, is conceived in such a way that it can be directly integrated with the device layout in multilayer chips. Every composite layer is cooled by water flow in microchannels (height of 100μm), which are arranged in two port water inlet-outlet configuration. The total power removed in the stack is 390 W at a temperature gradient budget of 60 K from liquid inlet to maximal junction temperature, corresponding to about 1.3kW/cm3 volumetric heat flow. The computational cost and complexity of detailed computational fluid dynamics (CFD) modeling of heat transfer in stacked chips with integrated cooling can be prohibitive. Therefore, the heat transfer structure is modeled using a porous medium approach, where the model parameters of heat transfer and hydrodynamic resistance are derived from averaging the results of the detailed 3D-CFD simulations of a single streamwise row of fins. The modeling results indicate that an isotropic porous medium model does not accurately predict the measured temperature fields. The variation of material properties due to temperature gradients is found to be large; therefore, variable properties are used in the model. It is also shown that the modeling of the heat transfer in the cooling sublayers requires the implementation of a porous medium approach with a local thermal nonequilibrium, as well as orthotropic heat conduction and hydrodynamic resistance. The improved model reproduces the temperatures measured in the stack within 10%. The model is used to predict the behavior of multilayer stacks mimicking the change of heat fluxes resulting from variations in the computational load of the chips during their operation.

1.
Brunschwiler
,
T.
, and
Michel
,
B.
, 2008,
Thermal Management of Vertically Integrated Packages
,
Wiley-VCH
,
Weinheim
, Chap. 33, pp.
635
649
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
(
5
), pp.
126
129
.
3.
Linderman
,
R. J.
,
Brunschwiler
,
T.
,
Kloter
,
U.
,
Toy
,
H.
, and
Michel
,
B.
, 2007, “
Hierarchical Nested Surface Channels for Reduced Particle Stacking and Low-Resistance Thermal Interfaces
,”
Proceedings of the 23rd Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, pp.
87
94
.
4.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W. S.
,
LaBianca
,
N. C.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K. C.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J. A.
, and
Schmidt
,
R. R.
, 2007, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
2
), pp.
218
225
.
5.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Fabbri
,
M.
,
Kloter
,
U.
,
Michel
,
B.
,
Bezama
,
R. J.
, and
Natarajan
,
G.
, 2006, “
Direct Liquid Jet-Impingement Cooling With Micron-Sized Nozzle Array and Distributed Return Architecture
,”
Proceedings of the Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
, Vols.
1
and 2, pp.
196
203
.
6.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2009, “
Efficiency of Optimized Bifurcating Tree-Like and Parallel Microchannel Networks in the Cooling of Electronics
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1421
1430
.
7.
Escher
,
W.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2010, “
Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips
,”
ASME J. Heat Transfer
0022-1481,
132
(
8
), p.
081402
.
8.
Wälchli
,
R.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2010, “
Combined Local Microchannel-Scale CFD Modeling and Global Chip Scale Network Modeling for Electronics Cooling Design
,”
Int. J. Heat Mass Transfer
0017-9310,
53
(
5–6
), pp.
1004
1014
.
9.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
, 2008, “
Forced Convective Interlayer Cooling in Vertically Integrated Packages
,”
Proceedings of the 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Vols.
1–3
, pp.
1114
1125
.
10.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L. N.
, and
Goodson
,
K. E.
, 2005, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
0022-1481,
127
(
1
), pp.
49
58
.
11.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
, 2009, “
Interlayer Cooling Potential in Vertically Integrated Packages
,”
Microsystem Technol.
,
15
(
1
), pp.
57
74
.
12.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
Springer
,
New York
.
13.
Koh
,
J. C. Y.
, and
Colony
,
R.
, 1986, “
Heat Transfer of Microstructures for Integrated Circuits
,”
Int. Commun. Heat Mass Transfer
0735-1933,
13
(
1
), pp.
89
98
.
14.
Brunschwiler
,
T.
,
Michel
,
B.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Cesar
,
W.
,
Toeral
,
G. T. Y.
, and
Leblebici
,
Y.
, 2009, “
Validation of Porous-Media Prediction of Interlayer Cooled 3D-Chip Stacks
,”
Proceedings of the IEEE International Conference on 3D System Integration, 3DIC
, San Francisco CA, pp.
1
10
.
15.
Koşar
,
A.
, and
Peles
,
Y.
, 2006, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
0022-1481,
128
(
2
), pp.
121
131
.
16.
Koşar
,
A.
, and
Peles
,
Y.
, 2008, “
Micro Scale Pin Fin Heat Sinks: Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
31
(
1
), pp.
235
235
.
17.
Peles
,
Y.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
, 2005, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
17
), pp.
3615
3627
.
18.
Žukauskas
,
A.
, and
Ulinskas
,
R.
, 1988,
Heat Transfer in Tube Banks in Crossflow
,
Hemisphere
,
Washington, DC
.
19.
Qu
,
W. L.
, and
Siu-Ho
,
A.
, 2008, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins-Part I: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
0022-1481,
130
(
12
), p.
122402
.
20.
Kim
,
K. Y.
, and
Moon
,
M. A.
, 2009, “
Optimization of a Stepped Circular Pin-Fin Array to Enhance Heat Transfer Performance
,”
Heat Mass Transfer
0947-7411,
46
(
1
), pp.
63
74
.
21.
Fowler
,
A. J.
, and
Bejan
,
A.
, 1994, “
Forced-Convection in Banks of Inclined Cylinders at Low Reynolds-Numbers
,”
Int. J. Heat Fluid Flow
0142-727X,
15
(
2
), pp.
90
99
.
22.
Yang
,
Y. T.
, and
Peng
,
H. S.
, 2008, “
Numerical Study of Pin-Fin Heat Sink With Un-Uniform Fin Height Design
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
19–20
), pp.
4788
4796
.
23.
Lee
,
P. S.
, and
Garimella
,
S. V.
, 2005, “
Hot-Spot Thermal Management with Flow Modulation in a Microchannel Heat Sink
,”
Proceedings of the ASME Heat Transfer Division
, Vol.
376-1
, pp.
643
647
.
24.
Saidi
,
M. H.
, and
Khiabani
,
R. H.
, 2007, “
Forced Convective Heat Transfer in Parallel Flow Multilayer Microchannels
,”
ASME J. Heat Transfer
0022-1481,
129
(
9
), pp.
1230
1236
.
25.
Wei
,
X. J.
, and
Joshi
,
Y.
, 2003, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
55
61
.
26.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
, 2005, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages
,”
Appl. Therm. Eng.
1359-4311,
25
(
10
), pp.
1472
1487
.
27.
Lide
,
D. R.
, 2010,
CRC Handbook of Chemistry and Physics
,
CRC
,
Boca Raton, FL
/
Taylor & Francis
,
London
, pp.
6
-
1
,
12
-
195
, and
12
-
198
.
28.
Strutt
,
J. W.
, 1892, “
On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium
,”
Philos. Mag.
1478-6435,
5
(
34
), pp.
481
502
.
29.
Kaviany
,
M.
, 1991,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.