This paper presents a numerical study to characterize the effect of loss of blowing agents on the thermal insulation properties of polystyrene foams. In this study, a transient cell-to-cell diffusion model is developed to predict the loss of the blowing agents. The Mie theory is used to quantify the radiative conductivity. A cubic-series-parallel approach in analogy with electric circuits is employed to acquire the thermal conductivity of the gas-polymer matrix. The effects of foam morphology and blowing agent type on the loss of blowing agents and the resulting thermal insulation properties of polystyrene foams are examined.
1.
Suh
, K. W.
, 2006, “Blowing Agent
,” Encyclopedia of Chemical Processing
, Vol. 1
, S.
Lee
, ed., CRC Press
, Boca Raton, FL
, pp. 237
–250
.2.
Park
, C. B.
, Behravesh
, A. H.
, and Venter
, R. D.
, 1998, “Low-Density, Microcellular Foam Processing in Extrusion Using CO2
,” Polym. Eng. Sci.
0032-3888, 38
(11
), pp. 1812
–1823
.3.
Naguib
, H. E.
, Park
, C. B.
, and Reichelt
, N.
, 2004, “Fundamental Foaming Mechanisms Governing Volume Expansion of Extruded PP Foams
,” J. Appl. Polym. Sci.
0021-8995, 91
(4
), pp. 2661
–2668
.4.
Xu
, X.
, Park
, C. B.
, Xu
, D.
, and Pop-Iliev
, R.
, 2003, “Effect of the Die Geometry on Cell Nucleation of PS Foams Blown With CO2
,” Polym. Eng. Sci.
0032-3888, 43
(7
), pp. 1378
–1390
.5.
Vo
, C. V.
, and Paquet
, A. N.
, 2004, “An Evaluation of the Thermal Conductivity of Extruded Polystyrene Foam Blown with HFC-134a or HCFC-142b
,” J. Cell. Plast.
0021-955X, 40
(3
), pp. 205
–228
.6.
Skochdopole
, R. E.
, 1961, “The Thermal Conductivity of Foamed Plastics
,” Chem. Eng. Prog.
0360-7275, 57
, pp. 55
–59
.7.
Booth
, J. R.
, 1993, “An Evaluation of the Dow Thermal Performance Prediction Model for a Database of XPS∕CFC-12 Aged Resistivity and Physical Properties
,” J. Thermal Insul., Bldg. Envelops
, 17
, pp. 154
–170
.8.
Biedermann
, A.
, Kudoke
, C.
, and Merten
, A.
, 2001, “Analysis of Heat Transfer Mechanisms in Polyurethane Rigid Foam
,” J. Cell. Plast.
0021-955X, 37
(6
), pp. 467
–483
.9.
Wu
, J. W.
, Sung
, W. F.
, and Chu
, H. S.
, 1999, “Thermal Conductivity of Polyurethane Foams
,” Int. J. Heat Mass Transfer
0017-9310, 42
, pp. 2211
–2217
.10.
Ostrogorsky
, A. G.
, Glicksman
, L. R.
, and Reitz
, D. W.
, 1986, “Aging of Polyurethane Foams
,” Int. J. Heat Mass Transfer
0017-9310, 29
(8
), pp. 1169
–1176
.11.
Leach
, A. G.
, 1993, “The Thermal Conductivity of Foams I: Models for Heat Transfer
,” J. Phys. D: Appl. Phys.
0022-3727, 26
, pp. 733
–739
.12.
Caps
, R.
, Heinemann
, U.
, Fricke
, J.
, and Keller
, K.
, 1997, “Thermal Conductivity of Polyamide Foams
,” Int. J. Heat Mass Transfer
0017-9310, 40
(2
), pp. 269
–280
.13.
Tseng
, C. J.
, Ramaguch
, M.
, and Ohmori
, T.
, 1997, “Thermal Conductivity of Polyurethane Foams From Room Temperature to 20K
,” Cryogenics
0011-2275, 37
(6
), pp. 305
–312
.14.
Wong
, C. M.
, and Hung
, M. L.
, 2008, “Polystyrene Foams as Core Materials Used in Vacuum Insulation Panel
,” J. Cell. Plast.
0021-955X, 44
(3
), pp. 239
–259
.15.
Coquard
, R.
, and Baillis
, D.
, 2006, “Modeling of Heat Transfer in Low-density EPS Foams
,” ASME J. Heat Transfer
0022-1481, 128
(6
), pp. 538
–549
.16.
Glicksman
, L. R.
, Schuetz
, M.
, and Sinofsky
, M.
, 1987, “Radiation Heat Transfer in Foam Insulation
,” Int. J. Heat Mass Transfer
0017-9310, 30
(1
), pp. 187
–197
.17.
Kuhn
, J.
, Ebert
, H. P.
, Arduini-schuster
, M. C.
, Buttner
, D.
, and Fricke
, J.
, 1992, “Thermal Transport in Polystyrene and Polyurethane Foam Insulations
,” Int. J. Heat Mass Transfer
0017-9310, 35
(7
), pp. 1795
–1801
.18.
Doermann
, D.
, and Sacadura
, J. F.
, 1996, “Heat Transfer in Open Cell Foam Insulation
,” ASME J. Heat Transfer
0022-1481, 118
(1
), pp. 88
–93
.19.
Yang
, C. T.
, and Lee
, S. T.
, 2003, “Dimensional Stability Analysis of Foams Based on LDPE and Ethylene-styrene Interpolymer Blends
,” J. Cell. Plast.
0021-955X, 39
(1
), pp. 59
–69
.20.
Pilon
, L.
, Fedorov
, A. G.
, and Viskanta
, R.
, 2000, “Gas Diffusion in Closed Foams
,” J. Cell. Plast.
0021-955X, 36
(6
), pp. 451
–474
.21.
Briscoe
, B. J.
, and Savvas
, T.
, 1998, “Gas Diffusion in Dense Poly(ethylene) Foams
,” Adv. Polym. Technol.
0730-6679, 17
, pp. 87
–106
.22.
Alsoy
, S.
, 1999, “Modeling of Diffusion in Closed Cell Polymeric Foams
,” J. Cell. Plast.
0021-955X, 35
(3
), pp. 247
–271
.23.
Booth
, J. R.
, Graves
, R. S.
, and Yarbrough
, D. W.
, 1995, “Aging of Thin-slices of PIR Foams Manufactured With Alternative Blowing Agents
,” J. Thermal Insul., Bldg. Envelops
, 19
(2
), pp. 118
–131
.24.
Bhattacharjee
, D.
, Irwin
, P. W.
, Booth
, J. R.
, and Grimes
, J. T.
, 1994, “The Acceleration of Foam Aging by Thin Slicing—Some Interpretations and Limitations
,” J. Thermal Insul., Bldg. Envelops
, 17
(3
), pp. 219
–237
.25.
Shankland
, I. R.
, 1995, “Blowing Agent Emission Calculations for a Refrigerator
,” J. Cell. Plast.
0021-955X, 31
(3
), pp. 227
–243
.26.
Tant
, M. R.
, and Wilkes
, G. L.
, 1981, “Physical Aging Studies of Semicrystalline Poly (ethylene Terephthalate)
,” J. Appl. Polym. Sci.
0021-8995, 26
, pp. 2813
–2825
.27.
Ruiz-Herrero
, J. L.
, Rodríguez-pérez
, M. A.
, and de Saja
, J. A.
, 2005, “Effective Diffusion Coefficient for the Gas Contained in Closed Cell Polyethylene-Based Foams, Subjected to Compressive Creep Tests
,” Polymer
0032-3861, 46
, pp. 3105
–3110
.28.
Quoc
, P. N.
, Zitha
, P. L. J.
, and Currie
, P. K.
, 2002, “Effect of Foam Films on Gas Diffusion
,” J. Colloid Interface Sci.
0021-9797, 248
(2
), pp. 467
–476
.29.
Griffiths
, P. C.
, Tipples
, C. N.
, Stilbs
, P.
, and McCormick
, B. H.
, 1998, “Restricted Diffusion of a “Gas” in a Solid Foam
,” Langmuir
0743-7463, 14
(22
), pp. 6603
–6605
.30.
Takeno
, K.
, Ichinose
, T.
, and Tokuda
, K.
, 1996, “Effects of High Expansion Foam Dispersed onto Leaked LNG on the Atmospheric Diffusion of Vaporized Gas
,” J. Loss Prev. Process Ind.
0950-4230, 9
(2
), pp. 125
–133
.31.
Hanssen
, J. E.
, 1993, “Foam as a Gas-Blocking Agent in Petroleum Reservoirs II: Mechanisms of Gas Blockage by Foam
,” J. Pet. Sci. Eng.
0920-4105, 10
(2
), pp. 135
–156
.32.
Gandel’sman
, M. I.
, Matveyenko
, R. V.
, and Budtov
, V. P.
, 1987, “Diffusion in Porous Strained Polymer Media
,” Polym. Sci. U.S.S.R.
0032-3950, 29
(6
), pp. 1212
–1218
.33.
Varady
, M. J.
, and Fedorov
, A. G.
, 2002, “Combined Radiation and Conduction in Glass Foams
,” ASME J. Heat Transfer
0022-1481, 124
(6
), pp. 1103
–1109
.34.
Krishnan
, S.
, Murthy
, J. Y.
, and Garimella
, S. V.
, 2006, “Direct Simulation of Transport in Open-cell Metal Foam
,” ASME J. Heat Transfer
0022-1481, 128
(8
), pp. 793
–799
.35.
Ghosh
, I.
, 2008, “Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,” ASME J. Heat Transfer
0022-1481, 130
(3
), p. 034501
.36.
Chen
, C.
and Jaluria
, Y.
, 2007, “Modeling of Radiation Heat Transfer in the Drawing of an Optical Fiber With Multilayer Structure
,” ASME J. Heat Transfer
0022-1481, 129
(3
), pp. 342
–352
.37.
Liu
, L. H.
, and Liu
, L. J.
, 2007, “Discontinuous Finite Element Approach for Transient Radiative Transfer Equation
,” ASME J. Heat Transfer
0022-1481, 129
(8
), pp. 1069
–1074
.38.
An
, W.
, Ruan
, L. M.
, Tan
, H. P.
, and Qi
, H.
, 2006, “Least-Squares Finite Element Analysis for Transient Radiative Transfer in Absorbing and Scattering Media
,” ASME J. Heat Transfer
0022-1481, 128
(5
), pp. 499
–503
.39.
Giaretto
, V.
, Miraldi
, E.
, and Ruscica
, G.
, 1995∕1996, “Simultaneous Estimations of Radiative and Conductive Properties in Lightweight Insulation Materials
,” High Temp. - High Press.
0018-1544, 27∕28
, pp. 191
–204
.40.
Çengel
, Y. A.
, 1977, Heat Transfer-a Practical Approach
, 2nd ed., McGraw-Hill
, New York
.41.
Placido
, E.
, Arduini-Schuster
, M. C.
, and Kuhn
, J.
, 2005, “Thermal Properties Predictive Model for Insulating Foams
,” Infrared Phys. Technol.
1350-4495, 46
, pp. 219
–231
.42.
Kerker
, M.
, 1969, The Scattering of Light and Other Electromagnetic Radiation
, Academic
, New York
.43.
van de Hulst
, H. C.
, 1981, Light Scattering by Small Particles
, Dover
, New York
.44.
Bashkatova
, T. A.
, Bashkatov
, A. N.
, Kochubey
, V. I.
, and Tuchin
, V. V.
, 2001, “Light Scattering Properties for Spherical and Cylindrical Particles: A Simple Approximation Derived From Mie Calculations
,” Proc. SPIE
0277-786X, 4241
, pp. 247
–259
.45.
Nichelatti
, E.
, 2002, “Complex Refractive Index of a Slab From Reflectance and Transmittance: Analytical Solution
,” J. Opt. A, Pure Appl. Opt.
1464-4258, 4
, pp. 400
–403
.46.
Ho
, W.
, and Ma
, C. M.
, 1998, “Diffuse Reflectance and Transmittance of IR Absorbing Polymer Film
,” Polym. Eng. Sci.
0032-3888, 38
(10
), pp. 1666
–1674
.47.
Wassiljewa
, A.
, 1904, “Wärmeleitung in Gasgemischen
,” Phys. Z.
0369-982X, 5
, pp. 737
–742
.48.
Mason
, E. A.
, and Saxena
, S. C.
, 1958, “Approximate Formula for the Thermal Conductivity of Gas Mixtures
,” Phys. Fluids
0031-9171, 1
(5
), pp. 361
–369
.49.
Basmadjian
, D.
, 2004, Mass Transfer: Principles and Applications
, CRC LLC
, Boca Raton, FL.
50.
Seifert
, H.
, Biedermann
, A.
, and Giesker
, C.
, 2003, “Can HFC245fa or Cyclopentane Blown Foams Match the Performance of HFC-Foams?
” J. Cell. Plast.
0021-955X, 39
(5
), pp. 417
–426
.51.
Zipfel
, L.
, Krücke
, W.
, Börner
, K.
, Barthélemy
, P.
, and Dournel
, P.
, 1998, “HFC 365mfc and HFC-245fa Progress in Application of New HFC Blowing Agents
,” J. Cell. Plast.
0021-955X, 34
(6
), pp. 511
–525
.52.
Willams
, D. J.
, Bogdan
, M. C.
, Parker
, R. C.
, and Knopech
, G. M.
, 1997, “Update on the Development of HFC-245fa as a Liquid HFC Blowing Agent
,” J. Cell. Plast.
0021-955X, 33
(3
), pp. 238
–263
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.