An investigation of the pressure drop and impingement zone heat transfer coefficient trends of a single-phase microscale impinging jet was undertaken. Microelectromechanical system (MEMS) processes were used to fabricate a device with a 67-μm orifice. The water jet impinged on an 80-μm square heater on a normal surface 200μm from the orifice. Because of the extremely small heater area, the conjugate convection-conduction heat transfer process provided an unexpected path for heat losses. A numerical simulation was used to estimate the heat losses, which were quite large. Pressure loss coefficients were much higher in the range Red,o<500 than those predicted by available models for short orifice tubes; this behavior was likely due to the presence of the wall onto which the jet impinged. At higher Reynolds numbers, much better agreement was observed. Area-averaged heat transfer coefficients up to 80,000W/m2K were attained in the range 70<Red<1900. This corresponds to a 400W/cm2 heat flux at a 50°C temperature difference. However, this impingement zone heat transfer coefficient is nearly an order-of-magnitude less than that predicted by correlations developed from macroscale jet data, and the dependence on the Reynolds number is much weaker than expected. Further investigation of microjet heat transfer is needed to explain the deviation from expected behavior.

1.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
2.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
, 1992, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
0142-727X,
13
(
2
), pp.
106
115
.
3.
Stefanescu
,
S.
,
Mehregany
,
M.
,
Leland
,
J.
, and
Yerkes
,
K.
, 1999, “
Micro Jet Array Heat Sink for Power Electronics
,”
Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
, Orlando, FL, pp.
165
170
.
4.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V. K.
, 2003, “
Experimental Investigation of Single-Phase Micro Jets Impingement Cooling for Electronic Applications
,”
Proceedings of the 2003 ASME Summer Heat Transfer Conference
, Las Vegas, NV, pp.
461
468
.
5.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J. -M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2004, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
1057-7157,
13
(
5
), pp.
833
842
.
6.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Fabbri
,
M.
,
Kloter
,
U.
,
Michel
,
B.
,
Bezama
,
R. J.
, and
Natarajan
,
G.
, 2006, “
Direct Liquid Jet-Impingement Cooling With Micron-Sized Nozzle Array and Distributed Return Architecture
,”
Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena and Emerging Technologies in Electronic Systems, iTherm 2006
, San Diego, CA, pp.
196
203
.
7.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2008, “
Single-Phase Hybrid Micro-Channel/Micro-Jet Impingement Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
17–18
), pp.
4342
4352
.
8.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2008, “
Effects of Jet Pattern on Single-Phase Cooling Performance of Hybrid Micro-Channel/Micro-Circular-Jet-Impingement Thermal Management Scheme
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
19–20
), pp.
4614
4627
.
9.
Wu
,
S.
,
Mai
,
J.
,
Tai
,
Y. C.
, and
Ho
,
C. M.
, 1999, “
Micro Heat Exchanger by Using MEMS Impinging Jets
,”
Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
, Orlando, FL, pp.
171
176
.
10.
Patil
,
V. A.
, and
Narayanan
,
V.
, 2005, “
Spatially Resolved Heat Transfer Rates in an Impinging Circular Microscale Jet
,”
Microscale Thermophys. Eng.
1089-3954,
9
(
2
), pp.
183
197
.
11.
Brutin
,
D.
, and
Tadrist
,
L.
, 2003, “
Experimental Friction Factor of a Liquid Flow in Microtubes
,”
Phys. Fluids
1070-6631,
15
(
3
), pp.
653
661
.
12.
Phares
,
D. J.
,
Smedley
,
G. T.
, and
Zhou
,
J.
, 2005, “
Laminar Flow Resistance in Short Microtubes
,”
Int. J. Heat Fluid Flow
0142-727X,
26
(
3
), pp.
506
512
.
13.
Jankowski
,
T. A.
,
Schmierer
,
E. N.
,
Prenger
,
F. C.
, and
Ashworth
,
S. P.
, 2008, “
A Series Pressure Drop Representation for Flow Through Orifice Tubes
,”
ASME J. Fluids Eng.
0098-2202,
130
(
5
), p.
051204
.
14.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
15.
Shah
,
R. K.
, 1978, “
Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Noncircular Ducts
,”
ASME J. Fluids Eng.
0098-2202,
100
(
2
), pp.
177
179
.
16.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
, 1993, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets
,”
ASME J. Heat Transfer
0022-1481,
115
(
1
), pp.
106
116
.
17.
Garimella
,
S. V.
, and
Rice
,
R. A.
, 1995, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
117
(
4
), pp.
871
877
.
18.
Gardon
,
R.
, and
Cobonpue
,
J.
, 1962, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on It
,”
International Developments in Heat Transfer
, ASME, New York, pp.
454
460
.
19.
Lytle
,
D.
, and
Webb
,
B. W.
, 1994, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
12
), pp.
1687
1697
.
20.
Lee
,
J.
, and
Lee
,
S. -J.
, 1999, “
Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement
,”
Exp. Heat Transfer
0891-6152,
12
(
2
), pp.
137
156
.
21.
Zhou
,
D. W.
, and
Ma
,
C. F.
, 2006, “
Radial Heat Transfer Behavior of Impinging Submerged Circular Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
9–10
), pp.
1719
1722
.
You do not currently have access to this content.