The thermal and start-up characteristics of a passive direct methanol fuel cell system are simulated using a numerical model. The model captures both the thermal characteristics of the fuel cell and the passive fuel delivery system using a multifluid model approach. Since the fuel cell is run without any active temperature control, the temperature may rise until the convective and evaporative cooling effects balance the heat produced in the chemical reactions. The cell temperature can vary as much as 20°C, and it is vital to model the thermal effects for accurate results. The numerical model also includes continuous and discontinuous phase limitations, as well as a probabilistic spread of the porous properties. These added physical characteristics qualitatively portray the departure of carbon dioxide from the anode side of the fuel cell.

1.
Liu
,
J. G.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Wong
,
C. W.
, 2005, “
The Effect of Methanol Concentration on the Performance of a Passive DMFC
,”
Electrochem. Commun.
1388-2481,
7
, pp.
288
294
.
2.
Kim
,
D.
,
Cho
,
E. A.
,
Hong
,
S. A.
,
Oh
,
I. H.
, and
Ha
,
H. Y.
, 2004, “
Recent Progress in Passive Direct Methanol Fuel Cells at KIST
,”
J. Power Sources
0378-7753,
130
, pp.
172
177
.
3.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Thermal Fluids Management for Direct Methanol Fuel Cells
,” U.S. Patent Application No. 20060292412, pending.
4.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Planar Fuel Cell Stack and Method of Fabrication of the Same
,” U.S. Patent Application No. 20060286436, pending.
5.
Faghri
,
A.
, and
Guo
,
Z.
, 2006, “
Vapor Feed Fuel Cells With a Passive Thermal-Fluids Management System
,” U.S. Patent pending.
6.
Guo
,
Z.
, and
Faghri
,
A.
, 2006, “
Miniature DMFCs With Passive Thermal-Fluids Management Systems
,”
J. Power Sources
0378-7753,
160
(
2
), pp.
1142
1155
.
7.
Guo
,
Z.
, and
Faghri
,
A.
, 2006, “
Development of Planar Air Breathing Direct Methanol Fuel Cell Stacks
,”
J. Power Sources
0378-7753,
160
(
2
), pp.
1183
1194
.
8.
Jewett
,
G.
,
Guo
,
Z.
, and
Faghri
,
A.
, 2007, “
Water and Air Management Systems for a Passive Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
168
, pp.
434
446
.
9.
Rice
,
J.
, and
Faghri
,
A.
, 2006, “
A Transient Multi-Phase and Multi-Component Model of a New Passive DMFC
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4804
4820
.
10.
García
,
B. L.
,
Sethuraman
,
V. A.
,
Weidner
,
J. W.
,
White
,
R. E.
, and
Dougal
,
R.
, 2004, “
Mathematical Model of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
1
, pp.
43
48
.
11.
Chen
,
R.
, and
Zhao
,
T. S.
, 2005, “
Mathematical Modeling of a Passive-Feed DMFC With Heat Transfer Effect
,”
J. Power Sources
0378-7753,
152
, pp.
122
130
.
12.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
13.
Wang
,
Z. H.
, and
Wang
,
C. Y.
, 2003, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
(
4
), pp.
A508
A519
.
14.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A399
A406
.
15.
Pasogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
48
, pp.
4359
4369
.
16.
Hwang
,
J. J.
, 2006, “
Thermal-Electrochemical Modeling of a Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
153
(
2
), pp.
A216
A224
.
17.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
, 2003, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
0378-7753,
128
, pp.
173
184
.
18.
Wang
,
Y.
, and
Wang
,
C. Y.
, 2006, “
A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A1193
A1200
.
19.
Wang
,
C. Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4727
4766
.
20.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3891
3920
.
21.
Kaviany
,
M.
, 1991,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
Berlin
.
22.
Holley
,
B.
, and
Faghri
,
A.
, 2006, “
Permeability and Effective Pore Radius Measurements for Heat Pipe and Fuel Cell Applications
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
448
462
.
23.
Faghri
,
A.
, and
Zhang
,
Y.
, 2006,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
New York
.
24.
Ren
,
X.
,
Springer
,
T. E.
,
Zawodzinski
,
A.
, and
Gottesfeld
,
S.
, 2000, “
Methanol Transport Through Nafion Membranes, Electro-Osmotic Drag Effects on Potential Step Measurements
,”
J. Electrochem. Soc.
0013-4651,
147
(
2
), p.
466
.
25.
Meyers
,
J. P.
, and
Newman
,
J.
, 2002, “
Simulation of the Direct Methanol Fuel Cell, Parts I-III
,”
J. Electrochem. Soc.
0013-4651,
149
(
6
), p.
A718
.
26.
Stearns
,
S. D.
, 1981, “
A Portable Random Number Generator for Use in Signal Processing
,” Sandia National Laboratory, Technical Report.
27.
2004,
Handbook of Chemistry and Physics
, 85th ed.,
D. R.
Lide
, ed.,
CRC
,
Boca Raton, FL
.
28.
Yaws
,
C. L.
, 1995,
Handbook of Transport Property Data: Viscosity, Thermal Conductivity and Diffusion Coefficients of Liquids and Gases
,
Gulf
,
Houston, TX
.
29.
Yaws
,
C. L.
, 1992,
Thermodynamic and Physical Property Data
,
Gulf
,
Houston, TX
.
30.
Kulikovsky
,
A. A.
,
Dvisek
,
J.
, and
Kornyshev
,
A. A.
, 2000, “
Two-Dimensional Simulation of Direct Methanol Fuel Cell, a New (Embedded) Type of Current Collector
,”
J. Electrochem. Soc.
0013-4651,
147
(
3
), p.
953
.
You do not currently have access to this content.