A new technique for the development of finite difference schemes for diffusion equations is presented. The model equations are the one space variable advection diffusion equation and the two space variable diffusion equation, each with Dirichlet boundary conditions. A two-step hybrid technique, which combines perturbation methods based on the parameter ρ=Δt(Δx)2 with the Galerkin method, provides a systematic way to develop new finite difference methods, referred to as hybrid equations. The main contributions of this paper include the (1) recovery of classical explicit or implicit finite difference schemes using only the perturbation terms; (2) development of new finite difference schemes, referred to as hybrid equations, which have better stability properties than the classical finite difference equations, permitting the use of larger values of the parameter ρ; and (3) higher order accurate methods, with either O((Δx)4) or O((Δx)6) truncation error, formed by convex linear combinations of the classical and hybrid equations. The solution of the hybrid finite difference equations requires only a tridiagonal equation solver and, hence, does not lead to excessive computational effort.

1.
Patankar
,
S.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
2.
Roache
,
P.
, 1972,
Computational Fluid Dynamics
,
Kenmore Publishers
,
Albuquerque, NM
.
3.
Fillo
,
J.
, and
Geer
,
J.
, 1999, “
A New Numerical Technique for the Solution to the Heat Equation Based on a Hybrid Perturbation Galerkin Method
,”
Proceedings of the 33rd National Heat Transfer Conference
,
Albuquerque, NM
.
4.
Anderson
,
C. M.
, and
Geer
,
J. F.
, 1991, “
Investigating a Hybrid Perturbation Galerkin Technique Using Computer Algebra
,”
J. Symb. Comput.
0747-7171,
12
, pp.
695
714
.
5.
Geer
,
J. F.
, and
Andersen
,
C. M.
, 1989, “
A Hybrid Perturbation Galerkin Technique for Differential Equations Containing a Parameter
,”
Appl. Mech. Rev.
0003-6900,
42
(
11
), pp.
569
577
.
6.
Geer
,
J. F.
, and
Andersen
,
C. M.
, 1990, “
A Hybrid Perturbation-Galerkin Technique that Combines Multiple Expansions
,”
SIAM J. Appl. Math.
0036-1399,
50
, pp.
1474
1495
.
7.
Geer
,
J. F.
, and
Andersen
,
C. M.
, 1991,
Asymptotic Analysis and the Numerical Solution of Partial Differential Equations
,
Lecture Notes in Pure Applied Mathematics
, Vol.
130
,
Marcel Dekker
,
New York
.
8.
Geer
,
J. F.
, and
Andersen
,
C. M.
, 1991, “
Resonant Frequency Calculations Using a Hybrid Perturbation Galerkin Technique
,”
Appl. Mech. Rev.
0003-6900,
44
(
11
), pp.
S76
S88
.
9.
Geer
,
J. F.
, and
Dadfar
,
M. B.
, 1990, “
Nonresonant Excitation of the Forced Duffing Equation
,”
Proceedings of the International Conference on Control and Modelling
,
Tehran, Iran
, pp.
69
73
.
10.
Noor
,
A. K.
, and
Balch
,
C. D.
, 1984, “
Hybrid Perturbation/Bubnov-Galerkin Technique for Nonlinear Thermal Analysis
,”
AIAA J.
0001-1452,
22
(
2
), pp.
287
294
.
11.
Geer
,
J. F.
, and
Fillo
,
J.
, 1996, “
Hybrid Perturbation-Galerkin Technique for Nonlinear Heat Conduction Problems I: Steady Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
29
, pp.
61
73
.
12.
Fillo
,
J.
, and
Geer
,
J.
, 1996, “
Hybrid Perturbation-Galerkin Technique for Nonlinear Heat Conduction Problems II: Partial Differential Equations
,”
Numer. Heat Transfer, Part B
1040-7790,
29
, pp.
75
89
.
13.
Geer
,
J.
, and
Fillo
,
J.
, 1999, “
A New Numerical Solution Technique for Differential Equations Containing a Small Parameter
,”
Applied Mechanics in the Americas
, Vol.
6
, Rio de Janeiro, Brazil.
14.
Chen
,
J. C.
, 1988,
Finite Analytic Method: Handbook of Numerical Heat Transfer
,
W. J.
Minkowyz
, ed.,
Wiley
,
New York
.
15.
Golub
,
G.
, and
Ortega
,
J.
, 1991,
Scientific Computing and Differential Equations: An Introduction to Numerical Methods
,
Academic
,
New York
.
16.
Smith
,
G. D.
, 1978,
Numerical Solution of Partial Differential Equations: Finite Difference Methods
,
Clarendon
,
Oxford
.
17.
Peaceman
,
D. W.
, and
Rachford
,
H. H.
, 1955, “
The Numerical Solution of Parabolic and Elliptic Differential Equations
,”
J. Soc. Ind. Appl. Math.
0368-4245,
3
(
1
), pp.
28
41
.
You do not currently have access to this content.