Direct simulation of thermal transport in open-cell metal foams is conducted using different periodic unit-cell geometries. The periodic unit-cell structures are constructed by assuming the pore space to be spherical and subtracting the pore space from a unit cube of the metal. Different types of packing arrangement for spheres are considered—body centered cubic, face centered cubic, and the A15 lattice (similar to a Weaire-Phelan unit cell)—which give rise to different foam structures. Effective thermal conductivity, pressure drop, and Nusselt number are computed by imposing periodic boundary conditions for aluminum foams saturated with air or water. The computed values compare well with existing experimental measurements and semiempirical models for porosities greater than 80%. The effect of different foam packing arrangements on the computed thermal and fluid flow characteristics is discussed. The capabilities and limitations of the present approach are identified.

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
New York
.
2.
Ashby
,
M. F.
,
Evans
,
A.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. J. G.
, 2000,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Boston
.
3.
Banhart
,
J.
, 2001, “
Manufacture, Characterization and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
0079-6425,
46
, pp.
559
632
.
4.
Lakes
,
R. S.
, 1987, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
0036-8075,
235
, pp.
1038
1040
.
5.
Chan
,
N.
, and
Evans
,
K. E.
, 1997, “
Fabrication Methods for Auxetic Foams
,”
J. Mater. Chem.
0959-9428,
32
, pp.
5945
5953
.
6.
Preciado
,
J. A.
,
Cohen
,
S.
,
Skandakumaran
,
P.
, and
Rubinsky
,
B.
, 2003, “
Utilization of Directional Freezing for the Construction of Tissue Engineering Scaffolds
,”
HTD (Am. Soc. Mech. Eng.)
0272-5673,
374
, pp.
439
442
.
7.
Freyman
,
T. M.
,
Yannas
,
I. V.
, and
Gibson
,
L. J.
, 2001, “
Cellular Materials as Porous Scaffolds for Tissue Engineering
,”
Prog. Mater. Sci.
0079-6425,
46
, pp.
273
282
.
8.
Heung
,
L. K.
, 2002, “
Design of Metal Hydride Vessels for Processing Tritium
,”
Sixth International Conference on Tritium Science and Technology
, pp.
1
11
.
9.
Peng
,
Y.
, and
Richardson
,
J. T.
, 2004, “
Properties of Ceramic Foam Catalyst Supports: One-Dimensional and Two-Dimensional Heat Transfer Correlations
,”
Appl. Catal., A
0926-860X,
266
, pp.
235
244
.
10.
Fend
,
T.
,
Hoffschmidt
,
B.
,
Pitz-Paal
,
R.
,
Reutter
,
O.
, and
Rietbrock
,
R.
, 2004,
Energy
0360-5442,
29
, pp.
823
833
.
11.
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
, 1993, “
Application of Metallic Foams in Electrochemical Reactors of Filter-Press Type Part I: Flow Characterization
,”
J. Appl. Electrochem.
0021-891X,
23
, pp.
1045
1050
.
12.
Kamiuto
,
K.
,
Andou
,
J.
,
Miyanaga
,
T.
, and
Taniyama
,
S.
, 2005, “
Mist Transpiration Cooling System Using Open-Cellular Porous Materials
,”
J. Thermophys. Heat Transfer
0887-8722,
19
, pp.
250
251
.
13.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
, 2005, “
Towards a Thermal Moore’s Law
,”
IEEE Trans. Adv. Packag.
1521-3323,
30
, pp.
462
474
.
14.
Ozmat
,
B.
,
Leyda
,
B.
, and
Benson
,
B.
, 2004, “
Thermal Applications of Open-Cell Metal Foams
,”
Mater. Manuf. Processes
1042-6914,
19
, pp.
839
862
.
15.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
, 2003, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
0167-6636,
35
, pp.
1161
1176
.
16.
Klein
,
J.
,
Gilchrist
,
G.
,
Karanik
,
J.
,
Arcas
,
N.
,
Yurman
,
R.
,
Whiteside
,
J.
,
Shields
,
B.
, and
Bartilucci
,
T.
, 2003, “
Thermal Management of Airbourne Early Warning and Electronic Warfare Systems Using Foam Metal Fins
,”
International Electronic Packaging Technical Conference and Exhibition (IPACK’03)
, Paper No. IPACK2003-35187.
17.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2004, “
A Two-Temperature Model for the Analysis of Passive Thermal Control Systems
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
628
637
.
18.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2005, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
995
1004
.
19.
DuPlessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
49
, pp.
3545
3553
.
20.
Bhattacharya
,
A.
,
Calmidi
,
A. A.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
21.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
, 2000, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
0195-928X,
21
, pp.
453
464
.
22.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2006, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
793
799
.
23.
Phelan
,
R.
,
Weaire
,
D.
, and
Brakke
,
K.
, 1995, “
Computation of Equilibrium Foam Structures Using the Surface Evolver
,”
Exp. Math.
1058-6458,
4
, pp.
181
192
.
24.
Weaire
,
D.
, 2001, “
A Philomorph Looks at Foam
,”
Proceedings of the American Philosophical Society
, Vol.
145
, pp.
564
574
.
25.
Dharmasena
,
K. P.
, and
Wadley
,
H. N. G.
, 2002, “
Electrical Conductivity of Open-Cell Metal Foams
,”
J. Mater. Res.
0884-2914,
17
, pp.
625
631
.
26.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
Simulations of Flow Through Open Cell Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
825
834
.
27.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
, 1977, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
180
186
.
28.
Murthy
,
J. Y.
, and
Mathur
,
S.
, 1997, “
Periodic Flow and Heat Transfer Using Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
659
677
.
29.
Fluent Inc., User’s Guide for GAMBIT 2.0, 2002.
30.
Fluent Inc., User’s Guide for FLUENT 6.0, 2002.
31.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure-Based Method for Unstructured Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
31
, pp.
195
216
.
32.
Kumar
,
S.
, and
Murthy
,
J. Y.
, 2005, “
A Numerical Technique for Computing Effective Thermal Conductivity of Fluid-Particle Mixtures
,”
Numer. Heat Transfer, Part B
1040-7790,
47
, pp.
555
572
.
33.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
34.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
827
836
.
35.
Lemlich
,
R.
, 1978, “
A Theory for the Limiting Conductivity of Polyhedral Foam at Low Density
,”
J. Colloid Interface Sci.
0021-9797,
64
, pp.
107
110
.
36.
Vafai
,
K.
, and
Tien
,
C. L.
, 1982, “
Boundary and Inertia Effects on Convective Mass Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
1183
1190
.
You do not currently have access to this content.