A non-premixed impinging jet flame at a Reynolds number 2000 and a nozzle-to-plate distance of two jet diameters was investigated using direct numerical simulation (DNS). Fully three-dimensional simulations were performed employing high-order numerical methods and high-fidelity boundary conditions to solve governing equations for variable-density flow and finite-rate Arrhenius chemistry. Both the instantaneous and time-averaged flow and heat transfer characteristics of the impinging flame were examined. Detailed analysis of the near-wall layer was conducted. Because of the relaminarization effect of the wall, the wall boundary layer of the impinging jet is very thin, that is, in the regime of viscous sublayer. It was found that the law-of-the-wall relations for nonisothermal flows in the literature need to be revisited. A reduced wall distance incorporating the fluid dynamic viscosity was proposed to be used in the law-of-the-wall relations for nonisothermal flows, which showed improved prediction over the law of the wall with the reduced wall distance defined in terms of fluid kinematic viscosity in the literature. Effects of external perturbation on the dynamic behavior of the impinging flame were found to be insignificant.

1.
Poinsot
,
T.
, and
Veynante
,
D.
, 2001,
Theoretical and Numerical Combustion
,
Edwards
,
Philadelphia
, Chap. 7.
2.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
, 2004,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
New York
.
3.
Viskanta
,
R.
, 1993, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
0894-1777,
6
, pp.
111
134
.
4.
Poinsot
,
T. J.
,
Haworth
,
D. C.
, and
Bruneaux
,
G.
, 1993, “
Direct Simulation and Modeling of Flame-Wall Interaction for Premixed Turbulent Combustion
,”
Combust. Flame
0010-2180,
95
, pp.
118
132
.
5.
Bruneaux
,
G.
,
Akselvoll
,
K.
,
Poinsot
,
T.
, and
Ferziger
,
J. H.
, 1996, “
Flame-Wall Interaction Simulation in a Turbulent Channel Flow
,”
Combust. Flame
0010-2180,
107
, pp.
27
44
.
6.
Bruneaux
,
G.
,
Poinsot
,
T.
, and
Ferziger
,
J. H.
, 1997, “
Premixed Flame-Wall Interaction in a Turbulent Channel Flow: Budget for the Flame Surface Density Evolution Equation and Modelling
,”
J. Fluid Mech.
0022-1120,
349
, pp.
191
219
.
7.
Popp
,
P.
, and
Baum
,
M.
, 1997, “
Analysis of Wall Heat Fluxes, Reaction Mechanisms, and Unburnt Hydrocarbons During the Head-on Quenching of a Laminar Methane Flame
,”
Combust. Flame
0010-2180,
108
, pp.
327
348
.
8.
Zhang
,
Y.
, and
Bray
,
K. N. C.
, 1999, “
Characterization of Impinging Jet Flames
,”
Combust. Flame
0010-2180,
116
, pp.
671
674
.
9.
Malikov
,
G. K.
,
Lobanov
,
D. L.
,
Malikov
,
K. Y.
,
Lisienko
,
V. G.
,
Viskanta
,
R.
, and
Fedorov
,
A. G.
, 2001, “
Direct Flame Impingement Heating for Rapid Thermal Materials Processing
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1751
1758
.
10.
Dong
,
L. L.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
, 2001, “
Heat Transfer Characteristics of an Impinging Butane∕Air Flame Jet of Low Reynolds Number
,”
Exp. Heat Transfer
0891-6152,
14
, pp.
265
282
.
11.
Dong
,
L. L.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
, 2002, “
Heat Transfer from an Impinging Premixed Butane∕Air Slot Flame Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
979
992
.
12.
Dong
,
L. L.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
, 2003, “
Heat Transfer Characteristics of a Pair of Impinging Rectangular Flame Jets
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
1140
1146
.
13.
De Lataillade
,
A.
,
Dabireau
,
F.
,
Cuenot
,
B.
, and
Poinsot
,
T.
, 2002, “
Flame∕Wall Interaction and Maximum Wall Heat Fluxes in Diffusion Burners
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
775
779
.
14.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2002, “
Dynamics of and Noise Radiated by a Perturbed Impinging Premixed Jet Flame
Combust. Flame
0010-2180,
128
, pp.
88
110
.
15.
Hsieh
,
W. D.
,
Hou
,
S. S.
, and
Lin
,
T. H.
, 2005, “
Methane Flames in a Jet Impinging Onto a Wall
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
267
275
.
16.
Tuttle
,
S. G.
,
Webb
,
B. W.
, and
McQuay
,
M. Q.
, 2005, “
Convective Heat Transfer From a Partially Premixed Impinging Flame Jet. Part II: Time-Resolved Results
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1252
1266
.
17.
Chander
,
S.
, and
Ray
,
A.
, 2006, “
Influence of Burner Geometry on Heat Transfer Characteristics of Methane∕Air Flame Impinging on Flat Surface
,”
Exp. Heat Transfer
0891-6152,
19
, pp.
15
38
.
18.
Wang
,
Y.
, and
Trouve
,
A.
, 2006, “
Direct Numerical Simulation of Nonpremixed Flame-Wall Interactions
,”
Combust. Flame
0010-2180,
144
, pp.
461
475
.
19.
Zuckerman
,
N.
, and
Lior
,
N.
, 2005, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
544
552
.
20.
Jiang
,
X.
, and
Luo
,
K. H.
, 2000, “
Combustion-Induced Buoyancy Effects of an Axisymmetric Reactive Plume
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1989
1995
.
21.
Jiang
,
X.
, and
Luo
,
K. H.
, 2003, “
Dynamics and Structure of Transitional Buoyant Jet Diffusion Flames with Side-Wall Effects
,”
Combust. Flame
0010-2180,
133
, pp.
29
45
.
22.
Jiang
,
X.
,
Zhao
,
H.
, and
Luo
,
K. H.
, 2007, “
Direct Computation of Perturbed Impinging Hot Jets
,”
Comput. Fluids
0045-7930,
36
, pp.
259
272
.
23.
Huang
,
W. M.
,
Vosen
,
S. R.
, and
Greif
,
R.
, 1986, “
Heat Transfer During Laminar Flame Quenching: Effect of Fuels
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
21
, pp.
1853
1860
.
24.
Westbrook
,
C. K.
,
Adamczyk
,
A. A.
, and
Lavoie
,
G. A.
, 1981, “
A Numerical Study of Laminar Flame Wall Quenching
,”
Combust. Flame
0010-2180,
40
, pp.
81
99
.
25.
Lele
,
S. K.
, 1992, “
Compact Finite-Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
0021-9991,
103
, pp.
16
42
.
26.
Williamson
,
J. H.
, 1980, “
Low-Storage Runge-Kutta Schemes
,”
J. Comput. Phys.
0021-9991,
35
, pp.
48
56
.
27.
Poinsot
,
T. J.
, and
Lele
,
S. K.
, 1992, “
Boundary-Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
0021-9991,
101
, pp.
104
129
.
28.
Thompson
,
K. W.
, 1987, “
Time-Dependent Boundary-Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
0021-9991,
68
, pp.
1
24
.
29.
Hussain
,
A. K. M. F.
, and
Zaman
,
K. B. M. Q.
, 1981, “
The Preferred Mode of the Axisymmetric Jet
,”
J. Fluid Mech.
0022-1120,
110
, pp.
39
71
.
30.
Tesar
,
V.
, and
Travnicek
,
Z.
, 2005, “
Increasing Heat and∕or Mass Transfer Rates in Impinging Jets
,”
J. Visualization
1343-8875,
8
, pp.
91
98
.
31.
Chung
,
Y. M.
, and
Luo
,
K. H.
, 2002, “
Unsteady Heat Transfer Analysis of an Impinging Jet
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
1039
1048
.
32.
Angioletti
,
M.
,
Di Tommaso
,
R. M.
,
Nino
,
E.
, and
Ruocco
,
G.
, 2003, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1703
1713
.
33.
Angelberger
,
C.
,
Poinsot
,
T.
, and
Delhaye
,
B.
, 1997, “
Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations
,” SAE Technical Paper No. 972881.
34.
Han
,
Z.
, and
Reitz
,
R. D.
, 1997, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
613
625
.
You do not currently have access to this content.