Abstract

High performance single-phase Si microchannel coolers have been designed and characterized in single chip modules in a laboratory environment using either water at 22°C or a fluorinated fluid at temperatures between 20 and 40°C as the coolant. Compared to our previous work, key performance improvements were achieved through reduced channel pitch (from 75 to 60 microns), thinned channel bases (from 425 to 200 microns of Si), improved thermal interface materials, and a thinned thermal test chip (from 725 to 400 microns of Si). With multiple heat exchanger zones and 60 micron pitch microchannels with a water flow rate of 1.25lpm, an average unit thermal resistance of 15.9Cmm2W between the chip surface and the inlet cooling water was demonstrated for a Si microchannel cooler attached to a chip with Ag epoxy. Replacing the Ag epoxy layer with an In solder layer reduced the unit thermal resistance to 12.0Cmm2W. Using a fluorinated fluid with an inlet temperature of 30°C and 60 micron pitch microchannels with an Ag epoxy thermal interface layer, the average unit thermal resistance was 25.6Cmm2W. This fell to 22.6Cmm2W with an In thermal interface layer. Cooling >500Wcm2 was demonstrated with water. Using a fluorinated fluid with an inlet temperature of 30°C, a chip with a power density of 270Wcm2 was cooled to an average chip surface temperature of 35°C. Results using both water and a fluorinated fluid are presented for a range of Si microchannel designs with a channel pitch from 60 to 100 microns.

1.
Sun
,
J.Y-C.
,
Taur
,
Y.
,
Dennard
,
R. H.
, and
Klepner
,
S. P.
, 1987, “
Submicronmeter Channel CMOS for Low-Temperature Operation
,”
IEEE Trans. Electron Devices
0018-9383,
34
(
1
), pp.
19
27
.
2.
Wind
,
S. J.
,
Shi
,
L.
,
Lee
,
K-L.
,
Roy
,
R. A.
,
Zhang
,
Y.
,
Sikorski
,
E.
,
Kozlowski
,
P.
,
D’emic
,
C.
,
Bucchignano
,
J. J.
,
Winn
,
H-J.
,
Viswanathan
,
R. G.
,
Cai
,
J.
, and
Taur
,
Y.
, 1999, “
Very High Performance 50nm CMOS at Low Temperature
,”
Tech. Dig. - Int. Electron Devices Meet.
0163-1918,
1
(
1
) pp.
928
930
.
3.
Dennard
,
R. H.
,
Cai
,
J.
, and
Kumar
,
A.
, 2007, “
A Perspective on Today’s Scaling Challenges and Possible Future Directions
,”
Solid-State Electron.
0038-1101,
51
, pp.
518
525
.
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High Performance Heat Sink for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
(
5
), pp.
126
129
.
5.
Phillips
,
R. J.
, 1990, “
Micro-Channel Heat Sinks
,” in
Advances in Thermal Modeling of Electronics
,
A.
Bar-Cohen
and
A. D.
Kraus
, eds.,
ASME
, New York, Vol.
2
, pp.
109
184
.
6.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
5
, pp.
293
311
.
7.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M.
, 2005,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
, Chap. 3, pp.
87
136
.
8.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
, and
Joshi
,
Y. K.
, 2005, “
Development of Liquid Cooling Techniques for Flip Chip Ball Grid Array Packages with High Heat Flux Dissipations
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
1
), pp.
127
135
.
9.
Chang
,
J-Y.
,
Prasher
,
R.
,
Chau
,
D.
,
Myers
,
A.
,
Dirner
,
J.
,
Prstic
,
S.
, and
He
,
D.
, 2005, “
Convective Performance of Package Based Single Phase Microchannel Heat Exchanger
,” IPACK2005-73126,
Proceedings of ASME InterPACK ’05
, July 17–22, San Francisco, CA.
10.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J.
, and
Schmidt
,
R.
, 2005, “
Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,” in
Proceedings of the 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose CA, March 15–17, pp.
1
7
.
11.
Laermer
,
F.
, and
Urban
,
A.
, 2003, “
Challenges, Developments and Applications of Silicon Deep Reactive Ion Etching
,”
Microelectron. Eng.
0167-9317,
67–68
, pp.
349
355
, and references therein.
12.
Harpole
,
G. M.
, and
Eninger
,
J. E.
, 1991, “
Micro-Channel Heat Exchanger Optimization
,” in
Proceedings of the Seventh IEEE Semi-Therm Symposium
, pp.
59
63
.
13.
Webb
,
R. L.
, 2003, “
Effect of Manifold Design on Flow Distribution in Parallel Micro-Channels
,” paper No. 35251,
Proceedings of IPACK03, International Electronic Packaging Technology Conference
.
14.
Kishimoto
,
T.
, and
Sasaki
,
S.
, 1987, “
Cooling Characteristics of Diamond-Shaped Interrupted Cooling Fins for High Power LSI Devices
,”
Electron. Lett.
0013-5194,
23
(
9
), pp.
456
457
.
15.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K.
,
Toy
,
H.
,
Wakil
,
J.
, and
Schmidt
,
R.
, 2006, “
Silicon Microchannel Cooling for High Power Chips
,”
HVAC&R Res.
1078-9669,
12
(
4
), pp.
1031
1045
.
16.
Furman
,
B. K.
,
Lauro
,
P. A.
,
Shih
,
D. Y.
,
Van Kessel
,
T.
,
Martin
,
Y.
,
Colgan
,
E. G.
,
Zou
,
W.
,
Iruvanti
,
S.
,
Wakil
,
J.
,
Schmidt
,
R.
, and
Iyengar
,
M. K.
, 2005, “
Metal TIMs for High Power Cooling Applications
,” IMAPS Advanced Technology Workshop on Thermal Management, Palo Alto, CA, Oct. 23–26.
You do not currently have access to this content.