Thermal hydraulics related to the design of the spallation target module of an accelerator-driven subcritical system (ADSS) was investigated numerically using a streamline upwind Petrov-Galerkin (SUPG) finite element (FE) method. A large amount of heat is deposited on the window and in the target during the course of nuclear reaction between the proton beam and the molten lead-bismuth eutectic (LBE) target. Simulations were carried out to predict the characteristics of the flow and temperature fields in the target module with a funnel-shaped flow guide and spherical bottom of the container. The beam window was kept under various thermal conditions. The analysis was extended to the case of heat generation in the LBE. The principal purpose of the analysis was to trace the temperature distribution on the beam window and in the LBE. In the case of turbulent flows, the number of recirculation regions is decreased and the maximum heat transfer was found to take place downstream of the stagnation zone on the window.

1.
Rubbia
,
C.
,
Rubio
,
J. A.
,
Buono
,
S.
,
Carminati
,
F.
,
Fietier
,
N.
,
Galvez
,
J.
,
Geles
,
C.
,
Kadi
,
Y.
,
Klapisch
,
R.
,
Mandrillon
,
P.
,
Revol
,
J. P.
, and
Roche
,
Ch.
, 1995, “
Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier
,” CERN Report No. CERN-AT-95–44 (ET), Geneva.
2.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1980, “
Streamline Upwind Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
32
, pp.
199
259
.
3.
Maiorino
,
J. R.
,
Santos
,
A. d.
, and
Pereira
,
S. A.
, 2002, “
The Utilization of Accelerators in Sub-Critical Systems for Energy Generation and Nuclear Waste Transmutation—the World Status and a Proposal of a National R&D Program
,”
Braz. J. Phys.
0103-9733
33
(
2
), pp.
267
272
.
4.
Dury
,
T. V.
,
Smith
,
B. L.
, and
Bauer
,
G. S.
, 1999, “
Design of the European Spallation Source Liquid-Metal Target Using Computational Fluid Dynamics
,”
Nucl. Technol.
0029-5450,
127
, pp.
218
232
.
5.
Cho
,
C. H.
,
Song
,
T. Y.
, and
Tak
,
N. I.
, 2004, “
Numerical Design of a 20MW Lead-Bismuth Spallation Target for an Accelerator-Driven System
,”
Nucl. Eng. Des.
0029-5493
229
, pp.
317
327
.
6.
Batta
,
A.
,
Broeders
,
C. H. M.
,
Cheng
,
X.
,
Konobeyev
,
A.
,
Neitzel
,
J.
,
Tak
,
N.
, and
Travleev
,
A.
, 2003, “
Window Target Unit for the XADS Lead-Bismuth Cooled Primary System
,”
Proceedings of International Workshop on P and T and ADS Development
, Mol, Belgium, Oct. 6–8,
SCK.CEN Club-House
, Mol, Belgium, pp.
1
9
.
7.
Buono
,
S.
,
Kadi
,
Y.
, and
Rubbia
,
C.
, 1997, “
Energy Deposition of a Proton Beam in the Lead Target of the Energy Amplifier
,” CERN/ET Internal Note, pp.
97.1
97.11
.
8.
Chorin
,
A. J.
, 1967, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
0021-9991
2
, pp.
12
26
.
9.
Reddy
,
J. N.
, and
Gartling
,
D. K.
, 1994,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
CRC Press
,
Boca Raton
.
10.
Comini
,
G.
, and Del
Giudice
,
S.
, 1985, “
A k-ϵ Model of Turbulent Flow
,”
Numer. Heat Transfer
0149-5720
8
, pp.
133
147
.
11.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
3
, pp.
269
289
.
12.
Benim
,
A. C.
, and
Zinser
,
W.
, 1985, “
Investigation Into the Finite Element Analysis of Confined Turbulent Flows Using a k-ϵ Model of Turbulence
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
51
, pp.
507
523
.
13.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
0031-9171
8
, pp
2182
2188
.
14.
Maji
,
P. K.
, and
Biswas
,
G.
, 1999, “
Analysis of Flow in the Spiral Casing Using a Streamline Upwind Petrov Galerkin Method
,”
Int. J. Numer. Methods Eng.
0029-5981
45
, pp.
147
174
.
15.
Prakash
,
K. A.
,
Biswas
,
G.
, and
Rathish Kumar
,
B. V.
, 2006, “
Thermal Hydraulics of the Spallation Target Module of an Accelerator Driven Sub-Critical System: A Numerical Study
,”
Int. J. Heat Mass Transfer
0017-9310
49
, pp.
4633
4652
.
16.
Laufer
,
J.
, 1954, “
The Structure of Turbulence in Fully Developed Pipe Flow
,” NACA Report No. 1174.
17.
Hutton
,
A. G.
, and
Smith
,
R. M.
, 1981, “
On the Finite Element Simulation of Incompressible Turbulent Flow in General Two-Dimensional Geometries
,”
Numerical Methods in Laminar and Turbulent Flow
,
Pineridge
,
Swansea
,
C.
Taylor
and
B. A.
Shrefler
, eds., pp.
229
242
.
You do not currently have access to this content.