Redistribution of the total energy of a fluid in motion, which is called “energy separation,” has been observed in various flow situations. Understanding the underlying mechanism of this interesting phenomenon has been limited due to lack of the temporal information on flow and temperature fields. In the present study, numerical simulation of a viscous circular jet was performed to provide detailed temporal information on pressure, vorticity, and total temperature fields. Nondimensionalized governing equations, including mass, momentum, and total energy conservation equations, were simultaneously solved by an equal-order linear finite element and fractional four-step method. The results show that the formation and transport of vortices induce a pressure fluctuation in the flow field. The fluid, which flows through the disturbed pressure field, exchanges pressure work with the surroundings, and gains or loses total energy. This work exchange leads to higher and lower total temperature regions than the surroundings. In addition to the presence and movement of the vortices, the results indicate that the vortex-pairing process significantly intensifies the pressure fluctuation and corresponding total temperature difference. This implies that the vortex-pairing process is a very important process in intensifying energy separation and might explain the enhancement of energy separation in a jet using acoustic excitation.

1.
Fox
,
M. D.
,
Kurosaka
,
M.
,
Hedges
,
L.
, and
Hirano
,
K.
, 1993, “
The Influence of Vortical Structure on Thermal Fields of Jets
,”
J. Fluid Mech.
0022-1120,
255
, pp.
447
472
.
2.
Seol
,
W. S.
, and
Goldstein
,
R. J.
, 1997, “
Energy Separation in a Jet Flow
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
74
82
.
3.
Han
,
B.
, 2001, “
Instantaneous Energy Separation in a Jet Flow
,” Ph.D. thesis, University of Minnesota, Minneapolis.
4.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelman
,
K. K.
, 1986, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
1227
1235
.
5.
Kurosaka
,
M.
,
Gertz
,
J. B.
,
Graham
,
J. E.
,
Goodman
,
J. R.
,
Sundaram
,
P.
,
Riner
,
W. C.
,
Kuroda
,
H.
, and
Hankey
,
W. L.
, 1987, “
Energy Separation in a Vortex Street
,”
J. Fluid Mech.
0022-1120,
178
, pp.
1
29
.
6.
Goldstein
,
R. J.
, and
He
,
B.
, 2001, “
Energy Separation and Acoustic Interactions in Flow Across a Circular Cylinder
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
682
687
.
7.
Van Oudheusden
,
B. W.
, 2005, “
Energy Separation in Steady Separated Wake Flow
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
611
614
.
8.
Shannak
,
B. A.
, 2004, “
Temperature Separation and Friction Losses in Vortex Tube
,”
Heat Mass Transfer
0947-7411,
40
, pp.
779
785
.
9.
Aljuwayhel
,
N. F.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
, 2005, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
0140-7007,
28
, pp.
442
450
.
10.
Piralishvili
,
S. A.
, and
Fuzeeva
,
A. A.
, 2006, “
Similarity of the Energy-Separation Process in Vortex Ranque Tubes
,”
J. Eng. Phys. Thermophys.
1062-0125,
79
, pp.
29
34
.
11.
Eckert
,
E. R. G.
, 1987, “
Cross Transport of Energy in Fluid Streams
,”
Waerme- Stoffuebertrag.
0042-9929,
21
, pp.
73
81
.
12.
Han
,
B.
, and
Goldstein
,
R. J.
, 2002, “
Energy Separation in Shear Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
47
55
.
13.
Choi
,
H. G.
,
Choi
,
H.
, and
Yoo
,
J. Y.
, 1997, “
A Fractional Four-Step Finite Element Formulation of the Unsteady Incompressible Navier-Stokes Equations Using SUPG and Linear Equal-Order Element Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
143
, pp.
333
348
.
14.
Seol
,
W. S.
, 1993, “
Energy Separation in a Jet Flow
,” Ph. D. thesis, University of Minnesota, Minneapolis.
15.
Gresho
,
P. M.
, 1991,
“Some Current CFD Issues Relevant to the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
87
, pp.
201
252
.
16.
Abramovich
,
G. N.
, 1963,
The Theory of Turbulent Jets
,
MIT Press
,
Cambridge
, MA.
17.
Rajaratnam
,
N.
, 1976,
Turbulent Jets
,
Elsevier
,
New York
.
You do not currently have access to this content.